Abstract
The necessity for efficient control of soft actuators has recently resulted in the development of complex physical models that are actuator geometry and material type dependent. In this paper, we address the ability to do closed-loop control with a simplified model independent of material properties and material characteristics of a soft robotic system. We demonstrate this by using a P-controller on a new 3-chambered, fiber-reinforced elastomeric actuator (3CA) that utilizes off-the-shelf stretch sensors. A motion capture system is used to calibrate and generate two different quasi-static models (a general linear regression model and an input dependent model) that map the varying chamber pressure readings with the actuator’s end effector position, effectively represented by the stretch sensor curvature. Simulations using a closed-loop controller, with both models, provide further insight on the quality of the models and corresponding control performance. We use this information in an experimental study that yields comparable performances to the simulated results. Moreover, we demonstrate that the input-dependent model based controller can provide better results than that of the general model based controller. Finally, we demonstrate that our soft actuator can be closed-loop controlled with off-the-shelf stretch sensors with repeatable results. This opens a way to design new control concepts for multi-chambered actuators that can produce more complex motions in the future.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adafruit: Conductive rubber cord stretch sensor [Online]. Available: https://www.adafruit.com/product/519
Agarwal, G., Besuchet, N., Audergon, B., Paik, J.: Stretchable materials for robust soft actuators towards assistive wearable devices. Sci. Rep. 6, 34224 (2016)
Asbeck, A.T., Schmidt, K., Galiana, I., Wagner, D., Walsh, C.J.: Multi-joint soft exosuit for gait assistance. In: IEEE International Conference on Robotics and Automation, pp. 6197–6204 (2015)
Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schaffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, G., Grunwald, A., et al.: The KUKA-DLR Lightweight Robot arm—a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics, pp. 1–8 (2010)
Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: rom the Cover: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 107(44), 18809–18814 (2010)
Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., Dario, P., Laschi, C.: Design and development of a soft robot with crawling and grasping capabilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4950–4955 (2012)
Chinimilli, P., Wachtel, S., Polygerinos, P., Zhang, W.: Hysteresis compensation for ground contact force measurement with shoe-embedded air pressure sensors. In: ASME Dynamic Systems and Control Conference (DSSC), p. 9920 (2016)
Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Member, S., Menciassi, A.: STIFF-FLOP Surgical Manipulator: mechanical design and experimental characterization of the single module. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3576–3581 (2013)
Firouzeh, A., Salerno, M., Paik, J.: Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF Actuation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1117–1124 (2015)
Fitzgerald, C.: Developing baxter. In: IEEE Conference on Technologies for Practical Robot Applications (TePRA) (2013)
Gafford, J., Ding, Y., Harris, A., McKenna, T., Polygerinos, P., Holland, D., Moser, A., Walsh, C.J.: Shape deposition manufacturing of a soft, atraumatic, deployable surgical grasper. In: ASME Design of Medical Devices Conference (2014)
Galiana, I., Member, S., Iii, F.L.H., Howe, R.D., Popovic, M.B., Hammond, F.L., Howe, R.D., Popovic, M.B.: Wearable soft robotic device for post-stroke shoulder rehabilitation: identifying misalignments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, October, pp. 317–322 (2012)
Galloway, K.C., Polygerinos, P., Walsh, C.J., Wood, R.J.: Mechanically programmable bend radius for fiber-reinforced soft actuators. In: 2013 16th International Conference on Advanced Robotics, ICAR (2013)
Haines, C.S., Lima, M.D., Li, N., Spinks, G.M., Foroughi, J., Madden, J.D., Kim, S.H.J., Fang, S., Jung de Andrade, M., Goktepe, F., Goktepe, O., Mirvakili, S.M., Naficy, S., Lepro, X., Oh, J., Kozlov, M.E., Kim, S.H.J., Xu, X., Swedlove, B.J., Wallace, G.G., Baughman, R.H.: Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014)
Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Haptic Identification of Objects using a Modular Soft Robotic Gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, September, pp. 1698–1705 (2015)
Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. Int. Ed. 50(8), 1890–1895 (2011)
Kadowaki, Y., Noritsugu, T., Takaiwa, M., Sasaki, D., Kato, M.: Development of soft power-assist glove and control based on human intent. J. Robot. Mechatron. 23(2), 281–291 (2011)
Lin, H.-T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 26007 (2011)
Luo, M., Skorina, E.H., Tao, W., Chen, F., Onal, C.D.: Optimized design of a rigid kinematic module for antagonistic soft actuation. In: IEEE Conference on Technologies for Practical Robot Applications, TePRA, August (2015)
Marchese, A.D., Rus, D.: Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int. J. Rob. Res. 35, 840–869 (2015)
Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)
McMahan, W., Jones, B.A., Walker, I.D.: Design and implementation of a multi-section continuum robot: air-octor. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, January, pp. 3345–3352 (2005)
Menguc, Y., Park, Y.-L., Pei, H., Vogt, D., Aubin, P.M., Winchell, E., Fluke, L., Stirling, L., Wood, R.J., Walsh, C.J.: Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33(14), 1748–1764 (2014)
Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A., Whitesides, G.M.: Camouflage and display for soft machines. Science 337(6096), 828–832 (2012)
Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)
Park, Y.-L., Chen, B., Pérez-Arancibia, N.O., Young, D., Stirling, L., Wood, R.J., Goldfield, E.C., Nagpal, R.: Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir. Biomim. 9(1), 16007 (2014)
Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J.: EMG controlled soft robotic glove for assistance during activities of daily living. In: 2015 IEEE International Conference on Rehabilitative Robotics, August, pp. 55–60 (2015)
Polygerinos, P., Wang, Z., Galloway, K., Overvelde, B., Wood, R.: Soft elastomeric actuators with fiber reinforcement. In: Materials and Research Society, p. 2 (2013)
Polygerinos, P., Wang, Z., Overvelde, J.T.B., Galloway, K.C., Wood, R.J., Bertoldi, K., Walsh, C.J.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)
Ramezani, A., Chung, S.-J., Hutchinson, S.: A biomimetic robotic platform to study flight specializations of bats. Sci. Robot. 2(3), eaal2505 (2017)
Roche, E.T., Fabozzo, A., Lee, Y., Polygerinos, P., Friehs, I., Schuster, L., Whyte, W., Casar Berazaluce, A.M., Bueno, A., Lang, N., Pereira, M.J.N., Feins, E., Wasserman, S., O’Cearbhaill, E.D., Vasilyev, N.V., Mooney, D.J., Karp, J.M., del Nido, P.J., Walsh, C.J.: A light-reflecting balloon catheter for atraumatic tissue defect repair. Sci. Transl. Med. 7(306), 306–349 (2015)
Skorina, E.H., Tao, W., Chen, F., Luo, M., Onal, C.D.: Motion control of a soft-actuated modular manipulator. In: 2016 IEEE International Conference on Robotics and Automation, May, pp. 4997–5002 (2016)
Sridar, S., Majeika, C.J., Schaffer, P., Bowers, M., Ueda, S., Barth, A.J., Sorrells, J.L., Wu, J.T., Hunt, T.R., Popovic, M.: Hydro muscle—a novel soft fluidic actuator. In: 2016 IEEE International Conference on Robotics and Automation, pp. 4014–4021 (2016)
Subramanyam, K., Rogers, E., Kulesza, M., Holland, D., Gafford, J., Goldfield, E., Walsh, C.: Soft wearable orthotic device for assisting kicking motion in developmentally delayed infants. J. Med. Device 9(3), 30913 (2015)
Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, April, pp. 4975–4980 (2007)
Svetozarevic, B., Hofer, J., Jacob, D., Begle, M., Chatzi, E., Nagy, Z., Hofer, J., Jacob, D., Begle, M., Chatzi, E., Schlueter, A.: SoRo-Track: a two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. In: 2016 IEEE International Conference on Robotics and Automation, May, pp. 4945–4950 (2016)
Tolley, M.T., Shepherd, R.F., Karpelson, M., Bartlett, N.W., Galloway, K.C., Wehner, M., Nunes, R., Whitesides, G.M., Wood, R.J.: An untethered jumping soft robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 561–566 (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nguyen, P.H., Sridar, S., Zhang, W. et al. Design and control of a 3-chambered fiber reinforced soft actuator with off-the-shelf stretch sensors. Int J Intell Robot Appl 1, 342–351 (2017). https://doi.org/10.1007/s41315-017-0020-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41315-017-0020-z