Abstract
While methods for analysis of microbial samples exist in microbiology, most take in data at a population level, and cannot account for small variations within groups. Single-cell analysis (SCA) enables access to more detailed information about a culture than common analysis techniques. Techniques for single-cell analysis exist, but are limited in terms of speed and dexterity. A robotic pick-and-place system could potentially be a viable, efficient method of facilitating SCA. In this paper, a simple pick-and-place system for microbiological applications is presented. Similar systems have been presented in literature with very good positional accuracy and reliability (which are desirable characteristics in a micromanipulation system), but there have been only few advances in minimizing complexity in such systems. Moreover, these systems suffer from domination of adhesion forces at micro-scale during releasing task. Using only two of 3-axes motorized stages and two end effectors; a hybrid passive-active release strategy is presented. The proposed system achieves semi-automated pick-and-place of spherical objects in the low end of the micrometer scale (5–50 \(\upmu \hbox {m}\)).









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Avci, E., Hattori, T., Kamiyama, K., Kojima, M., Horade, M., Mae, Y., Arai, T.: Piezo-actuated parallel mechanism for biological cell release at high speed. Biomed. Microdevices 17(5), 98 (2015)
Bhringer, K.F., Fearing, R.S., Goldberg, K.Y.: Handbook of Indus-Trial Robotics, 2nd ed., vol. 55, pp. 1045–1066. Wiley, New York (2007)
Boudaoud, M., Haddab, Y., Le Gorrec, Y.: Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans. Mechatron. 18(3), 1130–1139 (2013)
Chen, T., Pan, M., Wang, Y., Liu, J., Chen, L., Sun, L.: Manipulation of microobjects based on dynamic adhesion control. Int. J. Adv. Robot. Syst. 9(3), 89 (2012)
Chen, T., Sun, L., Chen, L., Rong, W., Li, X.: A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens. Actuators A Phys. 158(2), 320–327 (2010)
Chen, T., Wang, Y., Yang, Z., Liu, H., Liu, J., Sun, L.: A PZT actuated triple-finger gripper for multi-target micromanipulation. Micromachines 8(2), 33 (2017)
Chen, B.K., Zhang, Y., Sun, Y.: Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J. Microelectromech. Syst. 18(3), 652–659 (2009)
Chowdhury, S., Thakur, A., Svec, P., Wang, C., Losert, W., Gupta, S.K.: Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans. Autom. Sci. Eng. 11(2), 338–347 (2014)
Chu, H.K., Mills, J.K., Cleghorn, W.L.: Automated dual-arm micromanipulation with path planning for micro-object handling. Robot. Auton. Syst. 74(2015), 166–174 (2015)
Demaghsi, H., Mirzajani, H., Ghavifekr, H.B.: A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively. Microsyst. Technol. 20(12), 2191–2202 (2014)
Dumtre, A., Dubey, J.P., Ferguson, D.J., Bongrand, P., Azas, N., Puech, P.H.: Mechanics of the Toxoplasma gondii oocyst wall. Proc. Natl. Acad. Sci. 110(28), 11535–11540 (2013)
Fearing, R.S.: Survey of sticking effects for micro parts handling. In: Intelligent robots and systems, Pittsburgh (1995)
Gauthier, M., Regnier, S., Rougeot, P.: Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 3(3–4), 389–413 (2006)
Horade, M., Kojima, M., Kamiyama, K., Kurata, T., Mae, Y., Arai, T.: Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator. J. Micromech. Microeng. 25(11), 115002 (2015)
Inoue, K., Matsuzaki, Y., Lee, S.: Micromanipulation using micro hand with two rotational fingers. J. Micro Nano Mechatron. 7(1–3), 33–44 (2012)
Kim, E., Kojima, M., Kamiyama, K., Horade, M., Mae, Y., Arai, T.: High-speed active release end-effector motions for precise positioning of adhered micro-objects. World J. Eng. Technol. 6(01), 81 (2017)
Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromechan. Microeng. 18(5), 8 (2008)
Kim, E., Kojima, M., Kamiyama, K., Horade, M., Mae, Y., Arai, T.: Accurate releasing of biological cells using two release methods. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon (2016)
Knig, K., Liang, H., Berns, M.W., Tromberg, B.J.: Cell damage by near-IR microbeams. Nature 377, 20–21 (1995)
Lambert, P., Rgnier, S.: Surface and contact forces models within the framework of microassembly. J. Micromechatron. 3(2), 123–157 (2006)
Liang, C., Wang, F., Shi, B., Huo, Z., Zhou, K., Tian, Y., Zhang, D.: Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens. Actuators A Phys. 269, 227–237 (2018)
Liu, J., Shi, C., Wen, J., Pyne, D., Liu, H., Ru, C., Sun, Y.: Automated vitrification of embryos: a robotics approach. IEEE Robot. Autom. Mag. 22(2), 33–40 (2015)
Mohanty, S.K., Rapp, A., Monajembashi, S., Gupta, P.K., Greulich, K.O.: Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm. Radiat. Res. 157(4), 378–385 (2002)
Nakajima, M., Takeuchi, M., Hisamoto, N., Fukuda, T., Hasegawa, Y., Huang, Q.: Novel in situ nanomanipulation integrated with SEM-CT imaging system. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)
Pahwa, T., Gupta, S., Bansal, V., Prasad, B., Kumar, D.: Analysis and design optimization of laterally driven poly-silicon electro-thermal micro-gripper for micro-objects manipulation. In: COMSOL Conference, Bangalore (2012)
Shin, J.H., Seo, J., Hong, J., Chung, S.K.: Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects. Sens. Actuators B Chem. 246, 415–420 (2017)
Ta, Q.M., Cheah, C.C.: Optical manipulation of multiple microscopic objects with brownian perturbations. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)
Tseng, F.-G., Santra, T.S.: Essentials of single-cell analysis. Springer, Berlin (2016)
Volpe, G., Kurz, L., Callegari, A., Volpe, G., Gigan, S.: Speckle optical tweezers: micromanipulation with random light fields. Opt. Express 22(15), 18159–18167 (2014)
Wang, W.H., Liu, X.Y., Sun, Y.: Robust contact detection in micromanipulation using computer vision microscopy. In: International Conference of the IEEE Engineering in Medicine and Biology Society, New York (2006)
Xie, H., Onal, C., Rgnier, S., Sitti, M.: Atomic Force Microscopy Based Nanorobotics: Modelling, Simulation, Setup Building and Experiments, vol. 71. Springer, Berlin (2011)
Xu, Q.: Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sens. J. 15(10), 6017–6026 (2015)
Zhang, Y., Chen, B.K., Liu, X., Sun, Y.: Autonomous robotic pick-and-place of microobjects. IEEE Trans. Robot. 26(1), 200–207 (2010)
Zimmermann, S., Tiemerding, T., Haenssler, O.C., Fatikow, S.: Automated robotic manipulation of individual sub-micro particles using a dual probe setup inside the scanning electron microscope. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle (2015)
Acknowledgements
Research supported by Massey University Research Fund (MURF) 2018.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (MP4 10162 KB)
Rights and permissions
About this article
Cite this article
Crimp, D., Suhaimi, S. & Avci, E. Passive-active hybrid release strategy for micro-object separation task. Int J Intell Robot Appl 2, 436–444 (2018). https://doi.org/10.1007/s41315-018-0073-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41315-018-0073-7