Skip to main content
Log in

Nano-assembly and welding of gold nanorods based on DNA origami and plasmon-induced laser irradiation

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The bottom-up organization of noble metal nanostructures with nanometer-scale precision is an important goal in nanotechnology. Owing to their unique localized surface plasmon resonance, well-defined metal nanostructures arrays could be used to develop applications in nano-photonics, nano-plasmonics, and nano-electronics. This article proposes an alternative pathway of a controllable approach to assemble and weld together the gold nanostructures. As a typical plasmonic nanostructure, the gold nanorods (Au NRs) was synthesized by the classical seed-mediated growth method. Based on the recognition of biomolecules through complementary DNA hybridization, we used DNA origami strategy for controllable assembly of Au NRs. Rectangular DNA origami as a template can induce the geometrically assembled of Au NRs. We designed and fabricated tip-to-tip Au NRs dimers on the DNA templates. Then,the follow-up formation of nanojunctions between assembled tip-to-tip Au NRs dimers Au NRs was conducted by irradiating infrared femtosecond pulses laser. The ability to coupling plasmonic nanostructures by assembly and nano-welding could be fundamental to developing novel optical properties and ensuring materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen, E.S., et al.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73 (2009)

    Article  Google Scholar 

  • Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)

    Article  Google Scholar 

  • Chen, H., Shao, L., Li, Q., Wang, J.: Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)

    Article  Google Scholar 

  • Chen, Z., Lan, X., Chiu, Y.-C., Lu, X., Ni, W., Gao, H., Wang, Q.: Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates. ACS Photonics 2, 392–397 (2015)

    Article  Google Scholar 

  • Ekici, O., Harrison, R., Durr, N., Eversole, D., Lee, M., Ben-Yakar, A.: Thermal analysis of gold nanorods heated with femtosecond laser pulses. J. Phys. D Appl. Phys. 41, 185501 (2008)

    Article  Google Scholar 

  • Fontana, J., et al.: Widely tunable infrared plasmonic nanoantennas using directed assembly advanced. Opt. Mater. 5, 1700335 (2017)

    Article  Google Scholar 

  • González-Rubio, G., et al.: Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods. Nano Lett. 15, 8282–8288 (2015)

    Article  Google Scholar 

  • González-Rubio, G., Guerrero-Martínez, A., Liz-Marzán, L.M.: Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Accounts Chem. Res. 49, 678–686 (2016)

    Article  Google Scholar 

  • Herrmann, L.O., et al.: Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)

    Article  Google Scholar 

  • Hu, M., et al.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006)

    Article  Google Scholar 

  • Hung, A.M., Micheel, C.M., Bozano, L.D., Osterbur, L.W., Wallraff, G.M., Cha, J.N.: Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nanotechnol. 5, 121 (2010)

    Article  Google Scholar 

  • Kershner, R.J., et al.: Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4, 557 (2009)

    Article  Google Scholar 

  • Klein, W.P., et al.: Multiscaffold DNA origami nanoparticle waveguides. Nano Lett. 13, 3850–3856 (2013)

    Article  Google Scholar 

  • Lan, X., Chen, Z., Dai, G., Lu, X., Ni, W., Wang, Q.: Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 135, 11441–11444 (2013)

    Article  Google Scholar 

  • Li, N., Tittl, A., Yue, S., Giessen, H., Song, C., Ding, B., Liu, N.: DNA-assembled bimetallic plasmonic nanosensors. Light Sci. Appl. 3, e226 (2014)

    Article  Google Scholar 

  • Lin, L., Liu, L., Peng, P., Zou, G., Duley, W.W., Zhou, Y.N.: situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27, 125201 (2016)

    Article  Google Scholar 

  • Link, S., Burda, C., Mohamed, M., Nikoobakht, B., El-Sayed, M.A.: Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A 103, 1165–1170 (1999a)

    Article  Google Scholar 

  • Link, S., Burda, C., Nikoobakht, B., El-Sayed, M.: How long does it take to melt a gold nanorod? A femtosecond pump–probe absorption spectroscopic study. Chem. Phys. Lett. 315, 12–18 (1999b)

    Article  Google Scholar 

  • Liu, J., et al.: Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 5, 2240–2247 (2011)

    Article  Google Scholar 

  • Liu, N., Liedl, T.: DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018)

    Article  Google Scholar 

  • Ozin, G.A., et al.: Nanofabrication by self-assembly. Mater. Today 12, 12–23 (2009)

    Article  Google Scholar 

  • Pal, S., Deng, Z., Wang, H., Zou, S., Liu, Y., Yan, H.: DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 133, 17606–17609 (2011)

    Article  Google Scholar 

  • Pearson, A.C., Liu, J., Pound, E., Uprety, B., Woolley, A.T., Davis, R.C., Harb, J.N.: DNA origami metallized site specifically to form electrically conductive nanowires. J. Phys. Chem. B 116, 10551–10560 (2012)

    Article  Google Scholar 

  • Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., Mulvaney, P.: Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005)

    Article  Google Scholar 

  • Petrova, H., Juste, J.P., Pastoriza-Santos, I., Hartland, G.V., Liz-Marzán, L.M., Mulvaney, P.: On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 8, 814–821 (2006)

    Article  Google Scholar 

  • Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297 (2006)

    Article  Google Scholar 

  • Schreiber, R., et al.: Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 9, 74 (2014)

    Article  Google Scholar 

  • Son, M., Jeong, S., Jang, D.-J.: Laser-induced nanowelding of linearly assembled and silica-coated gold nanorods to fabricate Au@ SiO2 core-shell nanowires. J. Phys. Chem. C 118, 5961–5967 (2014)

    Article  Google Scholar 

  • Song, L., et al.: DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale 9, 7750–7754 (2017)

    Article  Google Scholar 

  • Steinhauer, C., Jungmann, R., Sobey, T.L., Simmel, F.C., Tinnefeld, P.: DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Edition 48, 8870–8873 (2009)

    Article  Google Scholar 

  • Tan, S.J., Campolongo, M.J., Luo, D., Cheng, W.: Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 6, 268 (2011)

    Article  Google Scholar 

  • Thacker, V.V., Herrmann, L.O., Sigle, D.O., Zhang, T., Liedl, T., Baumberg, J.J., Keyser, U.F.: DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 5, 3448 (2014)

    Article  Google Scholar 

  • Tran, T.-H., Nguyen, T.-D.: Controlled growth of uniform noble metal nanocrystals: aqueous-based synthesis and some applications in biomedicine. Colloids Surf. B 88, 1–22 (2011)

    Article  Google Scholar 

  • Vigderman, L., Khanal, B.P., Zubarev, E.R.: Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811–4841 (2012)

    Article  Google Scholar 

  • Wang, F., Shen, Y.R.: General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)

    Article  Google Scholar 

  • Wang, Z.G., Song, C., Ding, B.: Functional DNA nanostructures for photonic and biomedical applications. Small 9, 2210–2222 (2013)

    Article  Google Scholar 

  • Xu, A., Harb, J.N., Kostiainen, M.A., Hughes, W.L., Woolley, A.T., Liu, H., Gopinath, A.: DNA origami: the bridge from bottom to top. MRS Bull. 42, 943–950 (2017)

    Article  Google Scholar 

  • Xu, L., Kuang, H., Wang, L., Xu, C.: Gold nanorod ensembles as artificial molecules for applications in sensors. J. Mater. Chem. 21, 16759–16782 (2011)

    Article  Google Scholar 

  • Yang, X., Yang, M., Pang, B., Vara, M., Xia, Y.: Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015)

    Article  Google Scholar 

  • Yu, H.-D., Regulacio, M.D., Ye, E., Han, M.-Y.: Chemical routes to top-down nanofabrication. Chem. Soc. Rev. 42, 6006–6018 (2013)

    Article  Google Scholar 

  • Zhang, L., et al.: Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range. Chem. Mater. 26, 1794–1798 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Science Foundation of China (61773326), Shen Zhen (China) Basic Research Project (JCYJ20160329150236426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajing Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Y. & Shen, Y. Nano-assembly and welding of gold nanorods based on DNA origami and plasmon-induced laser irradiation. Int J Intell Robot Appl 2, 445–453 (2018). https://doi.org/10.1007/s41315-018-0074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0074-6

Keywords

Navigation