Skip to main content

Nonlinear optimal control for a spherical rolling robot

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The article presents a nonlinear H-infinity (optimal) control approach for the problem of the control of the spherical rolling robot. The solution of such a control problem is a nontrivial case due to underactuation and strong nonlinearities in the system’s state-space description. The dynamic model of the robot undergoes approximate linearization around a temporary operating point which is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the computation of the system’s Jacobian matrices. For the linearized dynamics of the spherical robot an H-infinity controller is designed. To compute the controller’s feedback gains an algebraic Riccati equation in solved at each iteration of the control algorithm. The global asymptotic stability properties of the control method are proven through Lyapunov analysis. Finally, for the implementation of sensorless control for the spherical rolling robot, the H-infinity Kalman Filter is used as a robust state estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Azizi, M.R., Keighbodi, J.: Point stabilization of nonholonomic spherical mobile robot using nonlinear model predictive control. Robot. Autonom. Syst. 98, 347–359 (2017)

    Article  Google Scholar 

  • Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  • Bhattacharya, S., Agrawal, S.K.: Spherical rolling robot: a design and motion planning studies. IEEE Trans. Robot. Autom. 16(6), 835–899 (2000)

    Article  Google Scholar 

  • Bicchi, A., Balladi, A., Prattichizzo, D., Gorelli, A.: Introducingthe Sphericle: an experimental method for research and teaching in nonholonomy, IEEE ICRA 1997. In: Proc. of the 1997 IEEE Intl. Conf. on Robotics and Automation, Albuquerque, New Mexico (1997)

  • Chen, J., Ye, P., Sun, H., Jin, Q.: Design and motion control of a spherical robot with control moment gyroscope. In: The 2016 3rd Intl. Conf. on Systems and Informatics, IEEE ICSAI 2016, Shanghai, China (2016)

  • Chen, W.H., Chen, C.P., Tsai, J.S., Xiong, J., Lin, P.C.: Design and implementation of a ball-driven omnidirectional spherical robot. Mech. Mach. Theory 68, 35–48 (2013)

    Article  Google Scholar 

  • Chiu, C.H., Tsai, W.R.: Design and implementation of an omnidirectional spherical mobile platform. IEEE Trans. Ind. Electron. 62(3), 1619–1628 (2015)

    Article  Google Scholar 

  • Coricia, C., Conticelli, F., Bicchi, A.: Nonholonomic kinematics and dynamics of the Sphericle, IEEE IROS 2000. In: Proc. of the IRRR /RSJ2000 Intl. Conf. on Intelligent Robots and Systems, Takamatsu, Japan (2000)

  • Gareshin, G.A., Keshmri, S., Shakli, D.: Nonlinear control based on H-infinity theory for autonomous aerial robots. In: 2017 Intl. Conf. of Unmanned Aircraft Systems, IETE ICUAJ 2017, Miami, Florida (2017)

  • Gibbs, B.P.: Advanced Kalman Filtering, Least Squares and Modelling: A Practical Handbook. Wiley, Oxford (2011)

    Book  Google Scholar 

  • Gojbhiye, S., Banavar, R.M.: The Euleur-Poincaré equation for a spherical robot actuated by a pendulum. In: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for nonlinear control. Bertinor, Italy (2012)

  • Ishikawa, M., Kitayashi, R., Sugie, T.: Dynamic rolling locomotion by spherical mobile robot considering its generalized momentum, IEEE SICE 2010. Taipei, Taiwan (2010)

  • Jia, Y.B.: Planning the initial motion fof a free sliding/rolling ball. IEEE Trans. Robot. 32(3), 566–584 (2016)

    Article  Google Scholar 

  • Kayacan, E., Bayraktaroglou, Z.Y., Saeyes, W.: Modelling and control of a spherical rolling robot: a decoupled dynamics approach. Robotica 30(4), 671–690 (2012)

    Article  Google Scholar 

  • Kayacan, E., Kayacan, E., Roman, H., Saeyes, W.: Adaptive neuro-fuzzy control of a spherical rolling robot using sliding-mode control-theory-based online learning algorithm. IEEE Trans. Cybern. 43(1), 170–179 (2013)

    Article  Google Scholar 

  • Kilin, A.A., Pivovarova, E.N., Ivanova, T.B.: Spherical Robot of Combined Type: Dynamics and Control, Regular and Chaotic Dynamics, pp. 716–728. Springer, Berlin (2015)

    MATH  Google Scholar 

  • Lin, D., Sun, H.: Nonlinear sliding-mode control for motion of a spherical robot. In: Proc. of the 29th IEEE Chinese Control Conference, Beijing, China (2010)

  • Liu, D., Sun, H., Jin, Q.: Stabilization and path following of a spherical robot. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, Changdu, China (2008)

  • Liu, D., Sun, H.: Nonlinear sliding-mode control for motion of a spherical robot. In: Proc. of the 29th IEEE Chinese Control Conference, Beijing, China (2010)

  • Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. In: Francis, B., Tannenbaum, A. (eds.) Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, pp. 150–172. Springer, Berlin (1995)

    Google Scholar 

  • Madhashani, T.W.U., Maithripola, D.H.S., Berg, J.M.: Feedback regularization and geometric PID control for trajectory tracking of mechanical systems: hoop robots on an inclined plane. In: 2017 American Control Conference. Seattle, USA (2017)

  • Madhashani, T.W.U., Maithripola, D.H.S., Wijayakalasooriya, J.V., Berg, J.M.: Semi-globally exponential trajectory tracking for a class of spherical robots. Automatica 85, 327–339 (2017)

    Article  MathSciNet  Google Scholar 

  • Maralidharan, V., Mahindrakar, A.D.: Geometric controllability and stabilization of spherical robot dynamics. IEEE Trans. Autom. Control 60(10), 2762–2767 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, Y., Baoyin, L.: Disturbance adaptive control for an underactuated spherical robot based on hierarchical sliding-mode technology. In: Proc. of the 31st Chinese Control Conference, Hefei, China, (2012)

  • Michaud, F., Caron, S.: Roball, the Rolling Robot, Autonomous Robots, vol. 12, pp. 211–222. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Morinaga, A., Svinin, M., Yamamoto, M.: A motion planning strategy for a spherical rolling robot driven by two internal motors. IEEE Trans. Robot. 30(4), 993–1002 (2014)

    Article  Google Scholar 

  • Niu, X., Saherlan, A.P., Soh, G.S., Feong, S., Word, K., Otta, K.: Mechanical development and control of a miniature nonholonomic spherical rolling robot. In: IEEE ICARCV 2014, 13th Intl. Conf. on Control, Automation, Robotics and Vision, Singapore (2014)

  • Rigatos, G.G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Rigatos, G.: Nonlinear Control and Filtering Using Differential Flatness Approaches: Applications to Electromechanicsl Systems. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  • Rigatos, G., Busawon, K.: Robotic Manipulators and Vehicles: Control, Estimation and Filtering. Springer, Berlin (2017)

    MATH  Google Scholar 

  • Rigatos, G.G., Tzafestas, S.G.: Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math. Comput. Model. Dyn. Syst. 13, 251–266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Rigatos, G., Zhang, Q.: Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Rigatos, G., Siano, P., Cecati, C.: A New Nonlinear H-infinity Feedback Control Approach for Three-phase Voltage Source Converters, Electric Power Components and Systems. Taylor and Francis, Routledge (2015)

    Google Scholar 

  • Roozegar, M., Mahjoob, M.J.: Modelling and control of a nonholonomic pendulum-driven spherical robot moving on an inclined plane: simulation and experimental results. IEEE Control Theory Appl. 11(4), 541–549 (2017)

    Article  Google Scholar 

  • Rouzeger, M., Mahjoob, M.J.: Modelling and control of non-holonomic pendulum-driven spherical robot moing on an inclined plane: simulation and experimental results. IET Control Theory Appl. 11(4), 541–549 (2017)

    Article  MathSciNet  Google Scholar 

  • Simon, D.: A game theory approach to constrained minimax state estimation. IEEE Trans. Signal Process. 54(2), 405–412 (2006)

    Article  MATH  Google Scholar 

  • Svinin, M., Marinaga, A., Yamamoto, M.: On the geometric phase approach to motion planning for a spherical rolling robot in dynamic formulation. In: 2013 IEEE/RST Intl. Conf. on Intelligent Robots and Systems, IROS 2013, Tokyo, Japan (2013)

  • Toussaint, G.J., Basar, T., Bullo, F.: \(H_{\infty }\) optimal tracking control techniques for nonlinear underactuated systems. In: Proc. IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney Australia (2000)

  • Urakawa, T., Monno, M., Mackawa, S., Tamaki, H.: Dynamic modelling and controller design for a spherical rolling robot equiped with a gyro. IEEE Trans. Control Syst. Technol. 24(5), 1669–1679 (2016)

    Article  Google Scholar 

  • Ylikorpi, T., Forsman, P., Halme, A., Saarinen, J.: Unified representation of decoupled dynamic models for pendulum-driven ball-shaped robots. In: Proc. of the 28th European Conference on Modelling and Simulation (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rigatos.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigatos, G., Busawon, K., Pomares, J. et al. Nonlinear optimal control for a spherical rolling robot. Int J Intell Robot Appl 3, 221–237 (2019). https://doi.org/10.1007/s41315-018-0078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0078-2

Keywords