Skip to main content
Log in

Circular steering of gold–nickel–platinum micro-vehicle using singular off-center nanoengine

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

A circular steering propulsion mechanism is proposed to explore autonomous movement of a miniature micro-vehicle with singular off-center nanoengine. The micro-vehicle comprising of gold, nickel, and platinum is invented and synthesized by layer-by-layer deposition based on the micro-electro-mechanical systems technology. The self-steering propulsion of the gold–nickel–platinum micro-vehicle is characterized in deionized water at three different hydrogen peroxide concentrations. Experimental results demonstrate that the micro-vehicle autonomously propels forward circularly in either a clockwise or a counter-clockwise direction without any external control. This research sheds light on the exploration of the self-steering propulsion achieved by the micro-vehicle with singular off-center nanoengine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Astorga, S.E., Hu, L.X., Marsili, E., Huang, Y.: Electrochemical signature of escherichia coli on nickel micropillar array electrode for early biofilm characterization. ChemElectroChem 6, 4674–4680 (2019)

    Article  Google Scholar 

  • Astorga, S.E., Hu, L.X., Marsili, E., Huang, Y.: Ordered micropillar array gold electrode increases electrochemical signature of early biofilm attachment. Mater. Des. 185, 108256 (2020)

    Article  Google Scholar 

  • Bao, J., Yang, Z., Nakajima, M., Shen, Y., Takeuchi, M., Huang, Q., Fukuda, T.: Self-actuating asymmetric platinum catalytic mobile nanorobot. IEEE Trans. Robot. 30, 33–39 (2014)

    Article  Google Scholar 

  • Gao, W., Dong, R.F., Thamphiwatana, S., Li, J.X., Gao, W.W., Zhang, L.F., Wang, J.: Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015)

    Article  Google Scholar 

  • Gibbs, J., Zhao, Y.P.: Catalytic nanomotors: fabrication, mechanism, and applications. Front. Mater. Sci. 5, 25–39 (2011)

    Article  Google Scholar 

  • Grüber, G., Manimekalai, M.S., Mayer, F., Müller, V.: The a subunit of the A1AO ATP synthase of methanosarcina mazei Gö1 contains two conserved arginine residues that are crucial for ATP synthesis. Biochem. Biophys. Acta Bioenerget 1837, 940–952 (2014)

    Article  Google Scholar 

  • Hall, S.B., Khudaish, E.A., Hart, A.L.: Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochim. Acta 43, 579–588 (1998)

    Article  Google Scholar 

  • Hess, H., Bachand, G.D., Vogel, V.: Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004)

    Article  Google Scholar 

  • Hu, L.X., Miao, J.M., Grüber, G.: Disk-like nanojets with steerable trajectory using platinum nozzle nanoengines. RSC Adv. 6, 3399–3405 (2016a)

    Article  Google Scholar 

  • Hu, L.X., Tao, K., Miao, J.M., Grüber, G.: Hydrogen-peroxide-fuelled platinum–nickel-SU-8 microrocket with steerable propulsion using an eccentric nanoengine. RSC Adv. 6, 102513–102518 (2016b)

    Article  Google Scholar 

  • Hu, L.X., Miao, J.M., Grüber, G.: Temperature effects on disk-like gold-nickel-platinumnanoswimmer’s propulsion fuelled by hydrogen peroxide. Sens. Actu B 239, 586–596 (2017a)

    Article  Google Scholar 

  • Hu, L.X., Wang, N., Miao, J.M., Grüber, G.: Investigation of temperature dependency on the propulsion of disk-like nanoswimmers. Procedia Technol. 6, 48–50 (2017b)

    Article  Google Scholar 

  • Hu, L.X., Rehman, S., Tao, K., Miao, J.M.: Characterization on three-dimensional trajectory of disk-like gold–nickel–platinum nanomotor using digital holographic imaging. Chem Sel 3, 9634–9640 (2018)

    Google Scholar 

  • Hu, L.X., Tao, K., Lim, Y.D., Miao, J.M., Kim, Y.J.: Self-steerable propulsion of disk-like micro-craft with dual off-center nanoengines. ACS Appl. Energy Mater. 2, 1657–1662 (2019)

    Article  Google Scholar 

  • Hu, L.X., Wang, N., Lim, Y.D., Miao, J.M.: Chemical reaction dependency, magnetic field and surfactant effects on the propulsion of disk-like micromotor and its application for E. coli transportation. NanoSelect (2020). https://doi.org/10.1002/nano.202000024

    Article  Google Scholar 

  • Hu LX, Wang N, Tao K, Catalytic micro/nanomotors: propulsion mechanisms, fabrication, control and applications. In: Smart nanosystems for biomedicine, optoelectronics and catalysis, Shabatina T, Editors, London, UK, Intechopen, 2020, pp. 1–33, doi: https://doi.org/10.5772/intechopen. 90456.

  • Kim, K., Guo, J.H., Liang, Z.X., Zhu, Q.F., Fan, D.L.: Man-made rotary nanomotors: a review of recent developments. Nanoscale 8, 10471 (2016)

    Article  Google Scholar 

  • Kline, T.R., Paxton, W.F., Mallouk, T.E., Sen, A.: Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44, 744–746 (2005)

    Article  Google Scholar 

  • Li, J., Huang, G., Ye, M., Li, M., Liu, R., Mei, Y.: Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment. Nanoscale 3, 5083–5089 (2011)

    Article  Google Scholar 

  • Li, J., Xiao, Q., Jiang, J.Z., Chena, G.N., Sun, J.J.: Au–Fe/Ni alloy hybrid nanowire motors with dramatic speed. RSC adv. 4, 27522–27525 (2014)

    Article  Google Scholar 

  • Li, T., Li, L., Song, W., Wang, L., Shao, G., Zhang, G.: Self-propelled multilayered microrockets for pollutants purification. ECS J. Solid State Sci. Technol. 4, S3016–S3019 (2015)

    Article  Google Scholar 

  • Manjare, M., Yang, B., Zhao, Y.P.: Bubble driven quasioscillatory translational motion of catalytic micromotors. Phys. Rev. Lett. 109, 128305 (2012)

    Article  Google Scholar 

  • Moo, G.S., Pumera, M.: Chemical energy powered nano/micro/macromotors and the environment. Chem. Eur. J. 20, 1–16 (2014)

    Article  Google Scholar 

  • Morales-Narváez, E., Guix, M., Medina-Sánchez, M., Mayorga, C.C., Martínez, A.M.: Micromotor enhanced microarray technology for protein detection. Small 10, 2542–2548 (2014)

    Article  Google Scholar 

  • Ozin, G.A.: Channel crossing by a catalytic nanomotor. ChemCatChem 5, 2798–2801 (2013)

    Article  Google Scholar 

  • Paxton, W.F., Sen, A., Mallouk, T.E.: Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J. 11, 6462–6470 (2005)

    Article  Google Scholar 

  • Safdar, M., Itkonen, T., Janis, J.: Bubble-propelled trimetallic microcaps as functional catalytic micromotors. RSC adv. 5, 13171–13174 (2015)

    Article  Google Scholar 

  • Sanchez, S., Solovev, A., Harazim, S., Deneke, C., Mei, Y., Schmidt, O.: Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Rec. 11, 367–370 (2011)

    Article  Google Scholar 

  • Schmidt, C., Vogel, V.: Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab Chip 10, 2195–2198 (2010)

    Article  Google Scholar 

  • Soler, L., Sánchez, S.: Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 6, 7175–7182 (2014)

    Article  Google Scholar 

  • Soler, L., Martínez-Cisneros, C., Swiersy, A., Sánchez, S., Schmidt, O.: Thermal activation of catalytic microjets in blood samples using microfluidic chips. Lab Chip 13, 4299–4303 (2013)

    Article  Google Scholar 

  • Stock, D., Namba, K., Lee, L.K.: Nanorotors and self-assembling macromolecular machines: the torque ring of the bacterial flagellar motor. Curr. Opin. Biotechnol. 23, 545–554 (2012)

    Article  Google Scholar 

  • Tao, K., Yi, H.P., Yang, Y., Chang, H.L., Wu, J., Tang, L.H., Yang, Z.S., Wang, N., Hu, L.X., Fu, Y.Q., Miao, J.M., Yuan, W.Z.: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy 67, 104197 (2020)

    Article  Google Scholar 

  • Teo, W.Z., Pumera, M.: Fe(0) nanomotors in ton quantities (10(20) units) for environmental remediation. Chem. Eur. J. 22, 1–10 (2016)

    Article  Google Scholar 

  • Wang, J.: Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4–9 (2009)

    Article  Google Scholar 

  • Wang, J.: Nanomachines: fundamentals and applications. Wiley VCH, Weinheim (2013). ISBN 978-3-527-33120-8

    Book  Google Scholar 

  • Wang, S., Wu, N.: Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30, 3477 (2014)

    Article  Google Scholar 

  • Wang, N., Kanhere, E., Tao, K., Hu, L.X., Wu, J., Miao, J.M., Triantafyllou, M.: Investigation of a thin-film quasi-reference electrode fabricated by combined sputtering-evaporation approach. Electroanalysis 31, 560–566 (2019)

    Google Scholar 

  • Wilson, D.A., Nolte, R.J.M., Hest, J.C.M.: Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012)

    Article  Google Scholar 

  • Zhao, G.J., Ambrosi, A., Pumera, M.: Self-propelled nanojets via template electrodeposition. Nanoscale 5, 1319–1324 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Ministry of Education Tier 2 (Grant No: MOE2011-T2-2-156; ARC 18/12), Singapore. We gratefully acknowledged Mr. Pek and Mr. Nordin in Micromachines Lab, School of Mechanical and Aerospace Engineering at Nanyang Technological University, for their kind help on the fabrication and SEM characterization of the micro-vehicles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangxing Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Wang, N., Tao, K. et al. Circular steering of gold–nickel–platinum micro-vehicle using singular off-center nanoengine. Int J Intell Robot Appl 5, 79–88 (2021). https://doi.org/10.1007/s41315-020-00146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-020-00146-z

Keywords

Navigation