Skip to main content

Advertisement

Log in

Wind measurement by computer vision on unmanned sailboat

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The measurement accuracy of wind direction and wind speed is very important to the unmanned sailboat control, but the mature mechanical wind sensor and ultrasonic wind sensor both have great defects to be applied to the unmanned sailboat. Inspired by previous works on neural networks, we propose a low-cost, real-time, and robust wind measurement system based on computer vision (CV). This CV-wind-sensor includes an airflow rope and a camera, which can be simply deployed on the sailboat. We implement a prototype system on the FPGA platform and run a series of experiments that demonstrate the promising performance of our system. For example, the absolute measurement loss of the CV sensor in this paper is basically kept below 0.4 m/s, which shows a great advantage of measurement accuracy compared with the mechanical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bhat, K.S., Twigg, C.D., Hodgins, J.K., Khosla, P.K., Popovic, Z., Seitz, S.M.: Estimating Cloth Simulation Parameters from Video. In D. Breen and M. Lin, editors, Symposium on Computer Animation. The Eurographics Association (2003)

  • Cardona, J.L., Howland, M.F., Dabiri, J.O.: Seeing the wind: Visual wind speed prediction with a coupled convolutional and recurrent neural network (2019)

  • Camp, D.W., Turner, R.E., Gilchrist, L.P.: Response tests of cup, vane, and propeller wind sensors. J. Geophys.. Res. 75(27), 5265–5270 (1970)

    Article  Google Scholar 

  • Cruz, N.A., Alves, J.C.: Autonomous sailboats: An emerging technology for ocean sampling and surveillance. In: OCEANS 2008, 1–6 (2008)

  • Ebert, P.R., Wood, D.H.: On the dynamics of tail fins and wind vanes. J. Wind Eng. Industrial Aerodyn. 56(2–3), 137–158 (1995)

    Article  Google Scholar 

  • Guo, Y., Romero, M., Ieng, S., Plumet, F., Benosman, R., Gas, B.: Reactive path planning for autonomous sailboat using an omni-directional camera for obstacle detection. In: 2011 IEEE International Conference on Mechatronics, pages 445–450 (2011)

  • Harbola, S., Coors, V.: One dimensional convolutional neural network architectures for wind prediction. Energy Conversion Manag. 195(SEP.), 70–75 (2019)

    Article  Google Scholar 

  • Kang’iri, S., Gradl, C., Byiringiro, J., Ngetha, H.: Design and calibration of a 3d-printed cup-vane wireless sensor node. Designs 2(3), 21 (2018)

    Article  Google Scholar 

  • Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, (2014)

  • Liu, H., Mi, X., Li, Y.: Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, lstm network and elm. Energy Conversion Manag. 159(MAR.), 54–64 (2018)

    Article  Google Scholar 

  • Li, G., Shi, J.: On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 87(7), 2313–2320 (2010)

    Article  Google Scholar 

  • Manley, J.E.: Unmanned surface vehicles, 15 years of development. In: OCEANS 2008, 1–4 (2008)

  • Meka, A., Maximov, M., Zollhoefer, M., Chatterjee, A., Seidel, H. P., Richardt, C., Theobalt, C.: Live intrinsic material estimation, Lime (2018)

  • Mottaghi, R., Bagherinezhad, H., Rastegari, M., Farhadi, A.: Newtonian image understanding: Unfolding the dynamics of objects in static images. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3521–3529 (2016)

  • Mohandes, M.A., Rehman, S., Halawani, T.O.: A neural networks approach for wind speed prediction. Renew Energy 13(3), 345–354 (2014)

    Article  Google Scholar 

  • Nakamura, R.: Observational studies of stable nocturnal boundary layers: intermittent turbulence, sensible heat budgets and observational errors. (2005)

  • Murphy, R.R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K.: Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane wilma. J. Field Robot. 25(3), 164–180 (2008)

    Article  Google Scholar 

  • Patruno, C., Nitti, M., Stella, E., D’Orazio, T.: Helipad detection for accurate uav pose estimation by means of a visual sensor. Int. J. Adv. Robot. Syst. 14(5), 1729881417731083 (2017)

    Article  Google Scholar 

  • Pastore, T., Djapic, V.: Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios. J. Field Robot. 27(6), 903–914 (2010)

    Article  Google Scholar 

  • Petres, C., Romero-Ramirez, M.-A., Plumet, F., Alessandrini, Bertrand: Modeling and reactive navigation of an autonomous sailboat. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pages 3571–3576. IEEE (2011)

  • Pindado, S., Cubas, J., Sorribes-Palmer, F..: The cup anemometer, a fundamental meteorological instrument for the wind energy industry. research at the idr/upm institute. Sensors 14(11), 21418–21452 (2014)

    Article  Google Scholar 

  • Plumet, F., Pêtrès, C., Romero-Ramirez, M., Gas, B., Ieng, S.: Toward an autonomous sailing boat. IEEE J. Oceanic Eng. 40(2), 397–407 (2015)

    Article  Google Scholar 

  • Quaranta, A.A., Aprilesi, G.C., De Cicco, G., Taroni, A.: A microprocessor based, three axes, ultrasonic anemometer. Journal of Physics E: Scientific Instruments 18(5), 384 (1985)

    Article  Google Scholar 

  • Runia, T.F.H., Gavrilyuk, K., Snoek, C.G.M., Smeulders, A.W.M.: Go with the flow: perception-refined physics simulation (2019)

  • Rynne, P.F., von Ellenrieder, K.D.: A wind and solar-powered autonomous surface vehicle for sea surface measurements. In: OCEANS 2008, 1–6 (2008)

  • Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. Adv. Neural Inform. Process. Syst. 1, 06 (2014)

    Google Scholar 

  • Shi, K., Liu, M.: Strapdown inertial navigation quaternion fourth-order runge-kutta attitude algorithm. J. Detection Control 041(003), 61–65 (2019)

    Google Scholar 

  • Spencer, L., Shah, M.: Water video analysis. In: 2004 International Conference on Image Processing, 2004. ICIP’04., volume 4, pages 2705–2708. IEEE (2004)

  • Steimle, E.T., Hall, M.L.: Unmanned surface vehicles as environmental monitoring and assessment tools. In: OCEANS 2006, 1–5 (2006)

  • Suzuki, T., Kamano, T., Harada, H.: Study on characteristics of a propeller type anemometer. Wind Engineers. JAWE 1984(22), 5–12 (1984)

    Google Scholar 

  • Su, F., Shang, D.-z., Wang, J.-b., Liu, X.-m., Zhu, Q.: Sports Center Aquatic. A measurement method of sailing attitude based on mems gyroscope and accelerometer. J Terahertz Sci Electron Inform Technol (2):9 (2014)

  • Svilainis, L., Dumbrava, V.: Measurement of complex impedance of ultrasonic transducers. Ultragarsas’’ Ultrasound’’ 62(1), 26–29 (2007)

    Google Scholar 

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9 (2015)

  • Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2018)

  • Vodrahalli, K., Bhowmik, A.K.: 3d computer vision based on machine learning with deep neural networks: A review. Journal of the Society for Information Display 25(11), 676–694 (2017)

    Article  Google Scholar 

  • Wu, J., Lim, J. J., Zhang, H., Tenenbaum, J.B., Freeman, W. T.: Physics 101: Learning physical object properties from unlabeled videos. In: British Machine Vision Conference (2016)

  • Zhi-qian, L., Ni, W., Sui-ping, Q., Zhi-wei, Z., Jia, S., Dong-ming, W.: Research on correction method of wind measurement based on platform attitude. In: Journal of Physics: Conference Series, volume 1607, page 012073. IOP Publishing (2020)

  • Zhou, S., Cong, Y., Li, J., Dai, H.: Comparison of algorithms for extracting quaternion from dcm. J. Chinese Inertial Technol. 016(004), 415–418 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Pan, Z., Cao, Y. et al. Wind measurement by computer vision on unmanned sailboat. Int J Intell Robot Appl 5, 252–263 (2021). https://doi.org/10.1007/s41315-021-00171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00171-6

Keywords

Navigation