Skip to main content
Log in

A survey on visual servoing for wheeled mobile robots

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Owing to advantages of large workspace and flexible movement, wheeled mobile robots are widely applied in industry. With vision module for environment perception, visual servoing of wheeled mobile robots has been one of the hottest research topics in robotic fields. Due to different demands for various applications and specific properties of the system, many challenges are faced for designing visual servoing control strategies. In this paper, development of visual servoing for mobile robots is elaborated in visual and control modules, respectively. The vision module along with various uncertainties are analyzed, which provides feedback signals for the servo controller, thus associating the image space with the motion space for further control. Moreover, motion controllers are devised under various constraints for different objectives, such as pose regulation and trajectory tracking. Research trends are discussed to show further focus of visual servoing of mobile robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aicardi, M., Casalino, G., Balestrino, A., Bicchi, A.: Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE Robot. Autom. Mag. 2(1), 27–35 (1995)

    Article  Google Scholar 

  • Al-Shanoon, A., Tan, A.H., Lang, H., Wang, Y.: Mobile robot regulation with position based visual servoing. In: 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, pp–1–6 (2018)

  • Andreopoulos, A., Tsotsos, J.K.: 50 years of object recognition: Directions forward. Comput. Vis. Image Underst. 117(8), 827–891 (2013)

    Article  Google Scholar 

  • Aranda, M., Lopez-Nicolas, G., Sagués, C.: Planar motion estimation from 1d homographies. In: 2012 12th IEEE International Conference on Control Automation Robotics and Vision, pp. 329–334 (2012)

  • Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  • Becerra, H.M., López-Nicolás, G., Sagüés, C.: A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Trans. Robot. 27(1), 175–183 (2011)

    Article  Google Scholar 

  • Benhimane, S., Malis, E., Rives, P., Azinheira, J.R.: Vision-based control for car platooning using homography decomposition. In: 2005 IEEE International Conference on Robotics and Automation, pp. 2161–2166 (2005)

  • Bhattacharya, S., Murrieta-Cid, R., Hutchinson, S.: Optimal paths for landmark-based navigation by differential-drive vehicles with field-of-view constraints. IEEE Trans. Robot. 23(1), pp. 47–59 (2007)

    Article  Google Scholar 

  • Brockett, R.W.: Asymptotic stability and feedback stabilization. Differ. Geom. Control Theory 27(1), 181–191 (1983)

    MathSciNet  MATH  Google Scholar 

  • Brown, J., Su, D., Kong, H., Sukkarieh, S., Kerrigan, E.C.: Improved noise covariance estimation in visual servoing using an autocovariance least-squares approach. Mechatronics 68, 102381 (2020)

  • Caron, G., Dame, A., Marchand, E.: Direct model based visual tracking and pose estimation using mutual information. Image Vis. Comput. 32(1), 54–63 (2014)

    Article  Google Scholar 

  • Chaumette, F., Hutchinson, S.: Visual servo control. I. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  • Chaumette, F., Hutchinson, S.: Visual servo control. II. Advanced approaches [tutorial]. IEEE Robot. Autom. Mag. 14(1), 109–118 (2007)

    Article  Google Scholar 

  • Chen, H.: Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. Int. J. Control Autom. Syst. 12(6), 1216–1224 (2014)

    Article  Google Scholar 

  • Chen, J., Dixon, W.E., Dawson, D.M., Chitrakaran, V.K.: Visual servo tracking control of a wheeled mobile robot with a monocular fixed camera. In: 2004 IEEE International Conference on Control Applications, pp. 1061–1066 (2004)

  • Chen, J., Dixon, W.E., Dawson, M., McIntyre, M.: Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Trans. Robot. 22(2), 406–415 (2006)

    Article  Google Scholar 

  • Chen, X., Jia, Y., Matsuno, F.: Tracking control of nonholonomic mobile robots with velocity and acceleration constraints. In: 2014 American Control Conference, pp. 880–884 (2014)

  • Chen, J., Jia, B., Zhang, K.: Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots. IEEE Trans. Cybern. 47(11), 3784–3798 (2017)

    Article  Google Scholar 

  • Chen, Y., Li, Z., Kong, H., Ke, F.: Model predictive tracking control of nonholonomic mobile robots with coupled input constraints and unknown dynamics. IEEE Trans. Ind. Inf. 15(6), 3196–3205 (2019)

    Article  Google Scholar 

  • Cherubini, A., Chaumette, F., Oriolo, G.: A position-based visual servoing scheme for following paths with nonholonomic mobile robots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1648–1654 (2008)

  • Chesi, G.: Visual servoing path planning via homogeneous forms and LMI optimizations. IEEE Trans. Robot. 25(2), 281–291 (2009)

    Article  Google Scholar 

  • Corke, P.I., Hutchinson, S.A.: A new partitioned approach to image-based visual servo control. IEEE Trans. Robot. Autom. 17(4), 507–515 (2001)

    Article  Google Scholar 

  • Dai, S., He, S., Lin, H., Wang, C.: Platoon formation control with prescribed performance guarantees for USVs. IEEE Trans. Ind. Electron. 65(5), 4237–4246 (2018)

    Article  Google Scholar 

  • Derpanis KG.: The Harris corner detector. York Univ., Toronto, ON, Canada, Tech. Rep., pp. 1–2 (2004)

  • Desai, C., Ramanan, D., Fowlkes, C.C.: Discriminative models for multi-class object layout. Int. J. Comput. Vision 95(1), 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dixon, W.E., Dawson, D.M., Zergeroglu, E., Behal, A.: Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 31(3), 341–352 (2001)

    Article  Google Scholar 

  • Drummond, T., Cipolla, R.: Real-time tracking of complex structures with on-line camera calibration. Image Vis. Comput. 20(5), 427–433 (2002)

    Article  Google Scholar 

  • Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, Y., Wang, C.: Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual servoing feedback. Acta Autom. Sin. 37(7), 857–864 (2011)

    MathSciNet  MATH  Google Scholar 

  • Fang, Y., Dixon, W.E., Dawson, D.M., Chen, J.: An exponential class of model-free visual servoing controllers in the presence of uncertain camera calibration. In: 42nd IEEE International Conference on Decision and Control, vol. 5, pp. 5390–5395 (2003)

  • Fang, Y., Dixon, W.E., Dawson, D.M., Chawda, P.: Homography-based visual servo regulation of mobile robots. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(5), 1041–1050 (2005)

    Article  Google Scholar 

  • Fang, Y., Liu, X., Zhang, X.: Adaptive active visual servoing of nonholonomic mobile robots. IEEE Trans. Ind. Electron. 59(1), 486–497 (2012)

    Article  Google Scholar 

  • Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  • Freda, L., Oriolo, G.: Vision-based interception of a moving target with a nonholonomic mobile robot. Robot. Auton. Syst. 55(6), 419–432 (2007)

    Article  Google Scholar 

  • Gans, N.R., Hutchinson, S.A.: Stable visual servoing through hybrid switched-system control. IEEE Trans. Robot. 23(3), 530–540 (2007)

    Article  Google Scholar 

  • Gao, Z., Su, J.: The estimation of image Jacobian matrix with time-delay compensation for uncalibrated visual servoing. Control Theory Appl. 26(1), 23–27 (2009)

    MATH  Google Scholar 

  • Gomez-Ojeda, R., Moreno, F.A., Zuñiga-Noël, D., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: A stereo SLAM system through the combination of points and line segments. IEEE Trans. Robot. 35(3), 734–746 (2019)

    Article  Google Scholar 

  • Gong, Z., Tao, B., Qiu, C., Yin, Z., Ding, H.: Trajectory planning with shortest path for modified uncalibrated visual servoing based on projective homography. IEEE Trans. Autom. Sci. Eng. 17(2), 1076–1083 (2020)

    Article  Google Scholar 

  • Guerrero, J.J., Murillo, A.C., Sagüés, C.: Localization and matching using the planar trifocal tensor with bearing-only data. IEEE Trans. Robot. 24(2), 494–501 (2008)

    Article  Google Scholar 

  • Gupta, M., Kumar, S., Behera, L., Subramanian, V.K.: A novel vision-based tracking algorithm for a human-following mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1415–1427 (2017)

    Article  Google Scholar 

  • Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 580–593 (1997)

  • Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Huang, J., Wen, C., Wang, W., Jiang, Z.: Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Syst. Control Lett. 62(3), pp.234–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, Y., Zhang, X., Fang, Y.: Vision-based minimum-time planning of mobile robots with kinematic and visibility constraints. IFAC Proc. Vol. 47(3), 11878–11883 (2014)

    Article  Google Scholar 

  • Ito, M., Shibata, M.: Visual servoing tasks to improve estimation of a PE-condition-based depth observer. In: 2012 IEEE SICE Annual Conference, pp. 1874–1877 (2012)

  • Jia, B., Liu, S.: Switched visual servo control of nonholonomic mobile robots with field-of-view constraints based on homography. Control Theory Technol. 13(4), 311–320 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Z., Lefeber, E., Nijmeijer, H.: Saturated stabilization and tracking of a nonholonomic mobile robot. Syst. Control Lett. 42(5), 327–332 (2001)

    Article  MATH  Google Scholar 

  • Ke, F., Li, Z., Yang, C.: Robust tube-based predictive control for visual servoing of constrained differential-drive mobile robots. IEEE Trans. Ind. Electron. 65(4), 3437–3446 (2018)

    Article  Google Scholar 

  • Keshmiri, M., Xie, W.: Image-based visual servoing using an optimized trajectory planning technique. IEEE/ASME Trans. Mechatron. 22(1), 359–370 (2017)

    Article  Google Scholar 

  • Kim, B.H., Roh, D.K., Lee, J.M., Lee, M.H., Son, K., Lee, M., Choi, J., Han, S.: Localization of a mobile robot using images of a moving target. In: 2001 IEEE International Conference on Robotics and Automation, vol.1, pp. 253–258 (2001)

  • Lee, A.X., Levine, S., Abbeel, P.: Learning visual servoing with deep features and fitted q-iteration. In: 2017 International Conference on Learning Representations (2017)

  • Li, W., Duan, F., Chen, B., Yuan, J., Tan, J.T.C., Xu, B.: Mobile robot action based on QR code identification. In: 2012 IEEE international conference on robotics and biomimetics, pp. 860–865 (2012)

  • Li, B., Fang, Y., Zhang, X.: 2d trifocal tensor based visual servo regulation of nonholonomic mobile robots. In: 32nd IEEE Chinese Control Conference, pp. 5764–5769 (2013a)

  • Li, B., Fang, Y., Zhang, X.: Essential-matrix-based visual servoing of nonholonomic mobile robots without short baseline degeneration. In: 2013 IEEE International Conference on Control Applications, pp. 617–622 (2013b)

  • Li, B., Fang, Y., Zhang, X.: Uncalibrated visual servoing of nonholonomic mobile robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 584–589 (2013c)

  • Li, B., Fang, Y., Hu, G., Zhang, X.: Model-free unified tracking and regulation visual servoing of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(4), 1328–1339 (2016a)

    Article  Google Scholar 

  • Li, B., Fang, Y., Zhang, X.: Visual servo regulation of wheeled mobile robots with an uncalibrated onboard camera. IEEE/ASME Trans. Mechatron. 21(5), 2330–2342 (2016b)

    Article  Google Scholar 

  • Li, B., Zhang, X., Fang, Y., Shi, W.: Visual servo regulation of wheeled mobile robots with simultaneous depth identification. IEEE Trans. Ind. Electron. 65(1), 460–469 (2018a)

    Article  Google Scholar 

  • Li, C., Zhang, X., Gao, H.: A general monocular visual servoing structure for mobile robots in natural scene using SLAM. In: 2018 International Conference on Cognitive Systems and Signal Processing, pp. 465–476 (2018b)

  • Liang, X., Wang, H., Chen, W., Guo, D., Liu, T.: Adaptive image-based trajectory tracking control of wheeled mobile robots with an uncalibrated fixed camera. IEEE Trans. Control Syst. Technol. 23(6), 2266–2282 (2015)

    Article  Google Scholar 

  • Liang, X., Wang, H., Liu, Y.H., Chen, W., Jing, Z.: Image-based position control of mobile robots with a completely unknown fixed camera. IEEE Trans. Autom. Control 63(9), 3016–3023 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y., Wang, H., Wang, C., Lam, K.K.: Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Trans. Robot. 22(4), 804–817 (2006)

    Article  Google Scholar 

  • Liu, D., Wu, X., Yang, Y.: An improved self-calibration approach based on adaptive genetic algorithm for position-based visual servo. J. Control Theory Appl. 6(3), 246–252 (2008)

    Article  MathSciNet  Google Scholar 

  • López-Nicolás, G., Gans, N.R., Bhattacharya, S., Sagüés, C., Guerrero, J.J., Hutchinson, S.: Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(4), 1115–1127 (2010a)

    Article  Google Scholar 

  • López-Nicolás, G., Guerrero, J.J., Sagüés, C.: Visual control through the trifocal tensor for nonholonomic robots. Robot. Auton. Syst. 58(2), 216–226 (2010b)

    Article  Google Scholar 

  • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  • Lu, Y., Song, D.: Visual navigation using heterogeneous landmarks and unsupervised geometric constraints. IEEE Trans. Robot. 31(3), 736–749 (2015)

    Article  Google Scholar 

  • Luca, D.A., Oriolo, G., Robuffo Giordano, P.: Feature depth observation for image-based visual servoing: theory and experiments. Int. J. Robot. Res. 27(10), 1093–1116 (2008)

    Article  Google Scholar 

  • Ma, Z., Su, J.: Robust uncalibrated visual servoing control based on disturbance observer. ISA Trans. 59, 193–204 (2015)

    Article  Google Scholar 

  • Ma, Y., Kosecka, J., Sastry, S.S.: Vision guided navigation for a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 15(3), 521–536 (1999)

    Article  Google Scholar 

  • MacKunis, W., Gans, N., Kaiser, K., Dixon, W.E.: Unified tracking and regulation visual servo control for wheeled mobile robots. In: 2007 IEEE International Conference on Control Applications, pp. 88–93 (2007)

  • Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Trans. Robot. 23(1), 87–100 (2007)

    Article  Google Scholar 

  • Michalek, M., Kozlowski, K.: Vector-field-orientation feedback control method for a differentially driven vehicle. IEEE Trans. Control Syst. Technol. 18(1), 45–65 (2010)

    Article  Google Scholar 

  • Moughlbay, A., Cervera, E., Martinet, P.: Model based visual servoing tasks with an autonomous humanoid robot. In: S. Lee, K.J.Yoon, J. Lee (eds.) Frontiers of Intelligent Autonomous Systems, pp. 466, 149–162 (2013)

  • Murrieri, P., Fontanelli, D., Bicchi, A.: A hybrid-control approach to the parking problem of a wheeled vehicle using limited view-angle visual feedback. Int. J. Robot. Res. 23(4–5), 437–448 (2004)

    Article  Google Scholar 

  • Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  • Okamoto Jr. J., Grassi Jr. V.: Visual servo control of a mobile robot using omnidirectional vision. In: 2002 Mechatronics, pp. 413–422 (2002)

  • Pandya, H., Gaud, A., Kumar, G., Krishna, K.M.: Instance invariant visual servoing framework for part-aware autonomous vehicle inspection using MAVs. J. Field Robot. 36(5), 892–918 (2019)

    Article  Google Scholar 

  • Pham, H., Pham, Q.: A new approach to time-optimal path parameterization based on reachability analysis. IEEE Trans. Robot. 34(3), 645–659 (2018)

    Article  Google Scholar 

  • Qin, T., Li, P., Shen, S.: VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  • Qiu, Y., Li, B., Shi, W., Chen, Y.: Concurrent-learning-based visual servo tracking and scene identification of mobile robots. Assem. Autom. 39(3), 460–468 (2019a)

    Article  Google Scholar 

  • Qiu, Y., Li, B., Shi, W., Zhang, X.: Visual servo tracking of wheeled mobile robots with unknown extrinsic parameters. IEEE Trans. Ind. Electron. 66(11), 8600–8609 (2019b)

    Article  Google Scholar 

  • Qiu, Z., Hu, S., Liang, X.: Disturbance observer based adaptive model predictive control for uncalibrated visual servoing in constrained environments. ISA Trans. 106, 40–50 (2020)

    Article  Google Scholar 

  • Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  • Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: 2006 European Conference on Computer Vision, pp. 430–443 (2006)

  • Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

  • Salaris, P., Fontanelli, D., Pallottino, L., Bicchi, A.: Shortest paths for a robot with nonholonomic and field-of-view constraints. IEEE Trans. Robot. 26(2), 269–281 (2010)

    Article  Google Scholar 

  • Salaris, P., Cristofaro, A., Pallottino, L., Bicchi, A.: Shortest paths for wheeled robots with limited field-of-view: Introducing the vertical constraint. In: 52nd IEEE Conference on Decision and Control, pp. 5143–5149 (2013)

  • Sampedro, C., Rodriguez-Ramos, A., Gil, I., Mejias, L., Campoy, P.: Image-based visual servoing controller for multirotor aerial robots using deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 979–986 (2018)

  • Scaramuzza, D.: 1-Point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vision 95(1), 74–85 (2011)

    Article  Google Scholar 

  • Serra, P., Cunha, R., Hamel, T., Silvestre, C., Le Bras, F.: Nonlinear image-based visual servo controller for the flare maneuver of fixed-wing aircraft using optical flow. IEEE Trans. Control Syst. Technol. 23(2), 570–583 (2015)

    Article  Google Scholar 

  • Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.: Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Trans. Robot. 32(6), 1524–1535 (2016)

    Article  Google Scholar 

  • Shi, H., Sun, G., Wang, Y., Hwang, K.S.: Adaptive image-based visual servoing with temporary loss of the visual signal. IEEE Trans. Ind. Inf. 15(4), 1956–1965 (2019)

    Article  Google Scholar 

  • Shi, H., Xu, M., Hwang, K.: A fuzzy adaptive approach to decoupled visual servoing for a wheeled mobile robot. IEEE Trans. Fuzzy Syst. 28(12), 3229–3243 (2020)

    Article  Google Scholar 

  • Shivakumar, S.S., Mohta, K., Pfrommer, B., Kumar, V., Taylor, C.J.: Real time dense depth estimation by fusing stereo with sparse depth measurements. In: 2019 IEEE International Conference on Robotics and Automation, pp. 6482–6488 (2019)

  • Song, K., Huang, J.: Fast optical flow estimation and its application to real-time obstacle avoidance. In: 2001 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2891–2896 (2001)

  • Tayebi, A., Tadjine, M., Rachid, A.: Invariant manifold approach for the stabilization of nonholonomic chained systems: application to a mobile robot. Nonlinear Dyn. 24(2), 167–181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Tian, N., Tanwani, A.K., Chen, J., Ma, M., Zhang, R., Huang, B., Goldberg, K., Sojoudi, S.: A fog robotic system for dynamic visual servoing. In: 2019 IEEE International Conference on Robotics and Automation, pp. 1982–1988 (2019)

  • Tsai, C.Y., Song, K.T., Dutoit, X., Van Brussel, H., Nuttin, M.: Robust visual tracking control system of a mobile robot based on a dual-Jacobian visual interaction model. Robot. Auton. Syst. 57(6), 652–664 (2009)

    Article  Google Scholar 

  • Wang, C., Liang, Z., Liu, Y.: Dynamic feedback robust regulation of nonholonomic mobile robots based on visual servoing. In: Joint 48th IEEE Conference on Decision and Control and 2009 28th IEEE Chinese Control Conference, pp. 4384–4389 (2009)

  • Wang, G., Wang, C., Song, X., Du, Q.: Trajectory tracking of nonholonomic mobile robots via discrete-time sliding mode controller based on uncalibrated visual servoing. In: 2014 International Conference on Intelligent Computing for Sustainable Energy and Environment, 2014 International Conference on Life System Modeling and Simulation, and 2014 Computational Intelligence, Networked Systems and their Applications, vol. 462, pp. 342–350 (2014a)

  • Wang, K., Liu, Y., Li, L.: Visual servoing trajectory tracking of nonholonomic mobile robots without direct position measurement. IEEE Trans. Robot. 30(4), 1026–1035 (2014b)

    Article  Google Scholar 

  • Wang, H., Guo, D., Xu, H., Chen, W., Liu, T., Leang, K.K.: Eye-in-hand tracking control of a free-floating space manipulator. IEEE Trans. Aerosp. Electron. Syst. 53(4), 1855–1865 (2017a)

    Article  Google Scholar 

  • Wang, R., Zhang, X., Fang, Y., Li, B.: Visual servoing of mobile robots with input saturation at kinematic level. In: 2017 International Conference on Image and Graphics, pp. 432–442 (2017b)

  • Wang, R., Zhang, X., Fang, Y.: Visual tracking of mobile robots with both velocity and acceleration saturation constraints. Mech. Syst. Signal Process. 150, 107274 (2021a)

  • Wang, R., Zhang, X., Fang, Y., Li, B.: Virtual-Goal-Guided RRT for visual servoing of mobile robots with FOV constraint. IEEE Trans. Syst. Man Cybern. Syst. (2021b). https://doi.org/10.1109/TSMC.2020.3044347

  • Xiao, H., Li, Z., Yang, C., Zhang, L., Yuan, P., Ding, L., Wang, T.: Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization. IEEE Trans. Ind. Electron. 64(1), 505–516 (2017)

    Article  Google Scholar 

  • Yin, C., Li, B., Shi, W., Sun, N.: Monitoring-based visual servoing of wheeled mobile robots. Int. J. Robot. Autom. 34(4), 320–330 (2019)

    Google Scholar 

  • Zambelli, M., Karayiannidis, Y., Dimarogonas, D.V.: Posture regulation for unicycle-like robots with prescribed performance guarantees. IET Control Theory Appl. 9(2), 192–202 (2015)

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Li, S.: A neural controller for image-based visual servoing of manipulators with physical constraints. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5419–5429 (2018)

    Article  MathSciNet  Google Scholar 

  • Zhang, X., Fang, Y., Ma, B., Liu, X., Zhang, M.: A fast homography decomposition technique for visual servo of mobile robots. In: 27th IEEE Chinese Control Conference, pp. 404–409 (2008)

  • Zhang, X., Fang, Y., Liu, X.: Motion-estimation-based visual servoing of nonholonomic mobile robots. IEEE Trans. Robot. 27(6), 1167–1175 (2011)

    Article  Google Scholar 

  • Zhang, X., Fang, Y., Sun, N.: Visual servoing of mobile robots for posture stabilization: from theory to experiments. Int. J. Robust Nonlinear Control 25(1), 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Fang, Y., Li, B., Wang, J.: Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robot parameters. IEEE Trans. Ind. Electron. 64(1), 390–400 (2017)

    Article  Google Scholar 

  • Zhang, K., Chen, J., Li, Y., Gao, Y.: Unified visual servoing tracking and regulation of wheeled mobile robots with an uncalibrated camera. IEEE/ASME Trans. Mechatron. 23(4), 1728–1739 (2018)

    Article  Google Scholar 

  • Zhang, M., Liu, X., Xu, D., Cao, Z., Yu, J.: Vision-based target-following guider for mobile robot. IEEE Trans. Ind. Electron. 66(12), 9360–9371 (2019a)

    Article  Google Scholar 

  • Zhang, X., Jiang, J., Fang, Y., Zhang, X., Chen, X.: Enhanced fiducial marker based precise landing for quadrotors. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1353–1358 (2019b)

  • Zhang, X., Wang, R., Fang, Y., Li, B., Ma, B.: Acceleration-level pseudo-dynamic visual servoing of mobile robots with backstepping and dynamic surface control. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 2071–2081 (2019c)

  • Zhang, X., Fang, Y., Zhang, X., Jiang, J., Chen, X.: A novel geometric hierarchical approach for dynamic visual servoing of quadrotors. IEEE Trans. Ind. Electron. 67(5), 3840–3849 (2020)

    Article  Google Scholar 

  • Zhao, W., Liu, H., Lewis, F.L., Valavanis, K.P., Wang, X.: Robust visual servoing control for ground target tracking of quadrotors. IEEE Trans. Control Syst. Technol. 28(5), 1980–1987 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to the constructive comments and suggestions from reviewers, the associate editor and the editor-in-chief.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by National Key Research and Development Project under Grant 2018YFB1307503, in part by National Natural Science Foundation of China Under Grant U1613210, 91848203, and 61973234, in part by Tianjin Science Fund for Distinguished Young Scholars, in part by Tianjin Natural Science Foundation under Grant 19JCYBJC18500, and in part by Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, B., Wang, R. et al. A survey on visual servoing for wheeled mobile robots. Int J Intell Robot Appl 5, 203–218 (2021). https://doi.org/10.1007/s41315-021-00177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00177-0

Keywords

Navigation