Skip to main content
Log in

Non-singular terminal sliding mode control of an omnidirectional mobile manipulator based on extended state observer

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This paper presents a non-singular terminal sliding mode control (NTSMC) design based on an improved extended state observer (IESO) with application to an omnidirectional mobile manipulator (OMM) for trajectory tracking control. Firstly, a unified dynamic model is derived based on Lagrange method for an OMM prototype. An IESO that can reduce the initial peaking phenomenon is applied to estimate the model uncertainties and external disturbances. Then a non-singular terminal sliding mode controller is applied for trajectory tracking control. Stability of the closed-loop system is analyzed using Lyapunov theory. Finally, both simulations and experimental tests verify the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander, D., Kristin, B., Florian, P., et al.: Whole-body impedance control of wheeled mobile manipulators. Auton Robots 40, 505–517 (2016)

    Article  Google Scholar 

  • Avanzini, G.B., Zanchettin, A.M., Rocco, P.: Constrained model predictive control for mobile robotic manipulators. Robotica 36(1), 19–38 (2018)

    Article  Google Scholar 

  • Bischoff, R., Huggenberger, U., Prassler, E.: KUKA youBot—a mobile manipulator for research and education. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 1–4. Shanghai, China (2011)

  • Cabal, C., Martínez-Salamero, L., Séguier, L., et al.: Maximum power point tracking based on sliding mode control for output-series connected converters in photovoltaic systems. IET Power Electron 7(4), 914–923 (2013)

    Article  Google Scholar 

  • Chung, J.H., Yi, B.J., Kim, W.K., et al.: The dynamic modeling and analysis for an omnidirectional mobile robot with three caster wheels. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 521–527. Taipei, Taiwan (2003)

  • Cui, R., Chen, L., Yang, C.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  • Ding, S., Li, S., Zheng, W.: New approach to second-order sliding mode control design. IET Control Theory Appl. 7(18), 2188–2196 (2013)

    Article  MathSciNet  Google Scholar 

  • Djebrani, S., Benali, A., Abdessemed, F.: Modelling and control of an omnidirectional mobile manipulator. Int. J. Appl. Math. Comput. Sci. 22(3), 601–616 (2012)

    Article  MathSciNet  Google Scholar 

  • Fareh, R., Saad, M.R., Saad, M., et al.: Trajectory tracking and stability analysis for mobile manipulators based on decentralized control. Robotica 37(10), 1732–1749 (2019)

    Article  Google Scholar 

  • Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  Google Scholar 

  • Guo, S., Yi, J., Sheng, B., et al.: Accuracy analysis of omnidirectional mobile manipulator with mecanum wheels. Adv. Manuf. 4(4), 363–370 (2016)

    Article  Google Scholar 

  • Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  • He, Y., Liu, C., Zhan, Y., et al.: Non-singular fast terminal sliding mode control with extended state observer and tracking differentiator for uncertain nonlinear systems. Math. Prob. Eng. 2014, 1–16 (2014)

    Google Scholar 

  • Kali, Y., Saad, M., Benjelloun, K., et al.: Discrete-time second order sliding mode with time delay control for uncertain robot manipulators. Robot. Auton. Syst. 94, 53–60 (2017)

    Article  Google Scholar 

  • Liu, J., Vazquez, S., Wu, L., et al.: Extended state observer-based sliding-mode control for three-phase power converters. IEEE Trans. Ind. Electron. 64(1), 22–31 (2017)

    Article  Google Scholar 

  • Li, Y., Xu, Q.: Kinematic analysis of a 3-PRS parallel manipulator. Robot. Comput. Integ. Manuf. 23(4), 395–408 (2007)

    Article  Google Scholar 

  • Luis, A.Z.A., Jesus, C.P.O., Efren, G.H.: Experimental study of the methodology for the modelling and simulation of mobile manipulators. Int. J. Adv. Robot. Syst. 9(5), 192–202 (2012)

    Article  Google Scholar 

  • Milan, K., Igor, M.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018)

    Article  MathSciNet  Google Scholar 

  • Mobayen, S., Majd, V.J., Sojoodi, M.: An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems. Math. Comput. Simulat. 85, 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  • Mohamed, B., Neila, M., Tarak, D.: Computed-torque control of a wheeled mobile manipulator. Int. J. Robot. Eng. 3(1), 5–11 (2018)

    Article  Google Scholar 

  • Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. 48(4), 535–544 (2017)

    Article  Google Scholar 

  • Peng, J., Yang, Z., Wang, Y., et al.: Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach. ISA Trans. 92, 166–179 (2019)

    Article  Google Scholar 

  • Seo, I., Han, S.I.: Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator. ISA Trans. 80, 322–335 (2018)

    Article  Google Scholar 

  • Song, K.T., Jiang, S., Lin, M.: Interactive teleoperation of a mobile manipulator using a shared-control approach. IEEE Trans. Hum. Mach. Syst. 6(46), 834–845 (2016)

    Article  Google Scholar 

  • Suárez, R., Palomo-Avellaneda, L., Martinez, J., et al.: Development of a dexterous dual-arm omnidirectional mobile manipulator. IFAC-PapersOnLine 51(22), 126–131 (2018)

    Article  Google Scholar 

  • Sun, D., Zhang, Y.: Improved third-order time-varying parameters nonlinear ESO restraining the derivative peaking phenomenon. Elect. Mach. Control Chin 21(9), 55–62 (2017)

    Google Scholar 

  • Tan, J., Xi, N.: Unified model approach for planning and control of mobile manipulators. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 3145–3152. Seoul, South Korea (2001)

  • Viet, T.D., Doan, P.T., Hung, N., et al.: Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction. J. Mech. Sci. Technol. 26(7), 2197–2211 (2012)

    Article  Google Scholar 

  • Watanabe, K., Sato, K., Izumi, K., et al.: Analysis and control for an omnidirectional mobile manipulator. J. Intell. Robot. Syst. 27(1–2), 3–20 (2000)

    Article  Google Scholar 

  • Zhang, Y., Li, W., Liao, B., et al.: Analysis and verification of repetitive motion planning and feedback control for omnidirectional mobile manipulator robotic systems. J. Intell. Robot. Syst. 75(3–4), 393–411 (2014)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 62073235 and Tianjin Natural Science Foundation under Grant 18JCQNJC04600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ren.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

7. Appendix

7. Appendix

This appendix shows the matrix in Eqs. (13) and (14).

1.1 7.1 For Eq. (13), i.e., \({{\varvec{M}}_{0}}\ddot{{\varvec{q}}}+{{{\varvec{C}}}_{0}\dot{{\varvec{q}}}}+\varvec{G}=\varvec{\tau }\)


Matrix \({\varvec{M}}_0\):

$$\begin{aligned} \varvec{M}_{0} = \left[ \begin{array}{ l l l } {\varvec{M}}_{011} &{} {\varvec{M}}_{012}\\ {\varvec{M}}_{021} &{} {\varvec{M}}_{022} \end{array} \right] , \end{aligned}$$
(44)

where:

$$\begin{aligned} \varvec{M}_{011}& = \left[ \begin{array}{ l l l } { m _ { 11 } } &{} { m _ { 12 } } &{} { m _ { 13 } } \\ { m _ { 21 } } &{} { m _ { 22 } } &{} { m _ { 23 } } \\ { m _ { 31 } } &{} { m _ { 32 } } &{} { m _ { 33 } } \end{array} \right] ,\\ \varvec{M}_{012}& = \left[ \begin{array}{ l l } { m _ { 14 } } &{} { m _ { 15 } } \\ { m _ { 24 } } &{} { m _ { 25 } } \\ { m _ { 34 } } &{} { m _ { 35 } } \end{array} \right] ,\\ \varvec{ M } _ { 021 }& = \left[ \begin{array}{ l l l } { m _ { 41 } } &{} { m _ { 42 } } &{} { m _ { 43 } } \\ { m _ { 51 } } &{} { m _ { 52 } } &{} { m _ { 53 } } \end{array} \right] , \varvec{ M } _ { 022 } = \left[ \begin{array}{ l l } { m _ { 44 } } &{} { m _ { 45 } } \\ { m _ { 54 } } &{} { m _ { 55 } } \end{array} \right] , \\ m_{11}& = m_{0}+m_{1}+m_{2}+m_{3}+m_{4};\\ m_{12}& = 0;\\ m_{13}& = \left( -\frac{1}{2}l_{1}m_{1}-l_{1}m_{3}+\frac{1}{2}l_{3}m_{3}-l_{1}m_{4}\right) \cos \theta _{1}\sin \varphi \\&+\left( \frac{1}{2}l_{2}m_{2}+l_{4}m_{3} +\frac{1}{2}l_{4}m_{4}\right) \sin \theta _{2}\sin \varphi ;\\ m_{14}& = \left( -\frac{1}{2}l_{1}m_{1}-l_{1}m_{3}+\frac{1}{2}l_{3}m_{3}-l_{1}m_{4}\right) \cos \varphi \sin \theta _{1}\\ m_{15}& = -\left( \frac{1}{2}l_{2}m_{2}+l_{4}m_{3}+\frac{1}{2}l_{4}m_{4}\right) \cos \theta _{2}\cos \varphi ;\\ m_{21}& = 0;\\ m_{22}& = m_{0}+m_{1}+m_{2}+m_{3}+m_{4};\\ m_{23}& = \left( \frac{1}{2}l_{1}m_{1}+l_{1}m_{3}-\frac{1}{2}l_{3}m_{3}+l_{1}m_{4}\right) \cos \theta _{1}\cos \varphi \\&-\left( \frac{1}{2}l_{2}m_{2}+l_{4}m_{3}+\frac{1}{2}l_{4}m_{4}\right) \cos \varphi \sin \theta _{2};\\ m_{24}& = \left( -\frac{1}{2}l_{1}m_{1}-l_{1}m_{3}+\frac{1}{2}l_{3}m_{3}-l_{1}m_{4}\right) \sin \theta _{1}\sin \varphi ;\\ m_{25}& = -\left( \frac{1}{2}l_{2}m_{2}+l_{4}m_{3}+\frac{1}{2}l_{4}m_{4}\right) \cos \theta _{2}\sin \varphi ;\\ m_{31}& = m_{13};m_{32}=m_{23};\\ m_{33}& = I+\frac{1}{6}\sum _{i=1}^{4}l_{i}^{2}m_{i}+\frac{1}{2}(l_{1}^{2}m_{3}-l_{1}l_{3}m_{3}+l_{4}^{2}m_{3}+l_{1}^{ 2}m_{4})\\&+\frac{1}{6}\cos ^{2}\theta _{1}(l_{1}^{2}m_{1}+3l_{1}^{2}m_{3}-3l_{1}l_{3}m_{3}+l_{3}^{2}m_{3} \\&+3l_{1}^{2}m_{4})-\frac{ 1 }{ 6 } \cos ^ { 2 } \theta _ { 2 } ( l _ { 2 } ^ { 2 } m _ { 2 } + 3 l _ { 4 } ^ { 2 } m _ { 3 } + l _ { 4 } ^ { 2 } m _ { 4 } ) \\&+\frac{1}{6}\sin ^{2}\theta _{1}(-l_{1}^{2}m_{1} -3l_{1}^{2}m_{3}+3l_{1}l _ { 3 } m _ { 3 } - l _ { 3 } ^ { 2 } m _ { 3 } - 3 l _ { 1 } ^ { 2 } m _ { 4 } ) \\&- \cos \theta _ { 1 } \sin \theta _ { 2 }( 2 l _ { 1 } l _ { 4 } m _ { 3 } -l _ { 3 } l _ { 4 } m _ { 3 } + l _ { 1 } l _ { 4 } m _ { 4 } ) \\&+\frac{ 1 }{ 6 } \sin ^ { 2 } \theta _ { 2 }( l _ { 2 } ^ { 2 } m _ { 2 } +3l_{4}^{2}m_{3}+l_{4}^{2}m_{4});\\ m_{34}& = m_{35}=0;\\ \\ m_{41}& = m_{14};m_{42}=m_{24};m_{43}=0;\\ m_{44}& = \frac{1}{3}l_{1}^{2}m_{1}+l_{1}^{2}m_{3}-l_{1}l_{3}m_{3}+\frac{1}{3}l_{3}^{2}m_{3}+l_{1}^{2}m_{4};\\ m_{45}& = \left( l_{1}l_{4}m_{3}-\frac{1}{2}l_{ 3 } l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 1 } l _ { 4 } m _ { 4 }\right) \sin (\theta _1-\theta _2);\\ m_{51}& = m_{15};m_{52}=m_{25};m_{53}=0;m_{54}=m_{45};\\ m_{55}& = \frac{1}{3}l_{2}^{2}m_{2}+l_{4}^{2}m_{3}+\frac{1}{3}l_{4}^{2}m _{4}; \end{aligned}$$

Matrix \({\varvec{C}}_0\):

$$\begin{aligned} \varvec{C}_{0}=\left[ \begin{array}{ c c } {\varvec{C}}_{011} &{} {\varvec{C}}_{012}\\ {\varvec{C}}_{021} &{} {\varvec{C}}_{022} \end{array}\right] , \end{aligned}$$
(45)

where:

$$\begin{aligned} \varvec{ C } _ { 011 }& = \left[ \begin{array}{ l l l } { c _ { 11 } } &{} { c _ { 12 } } &{} { c _ { 13 } } \\ { c _ { 21 } } &{} { c _ { 22 } } &{} { c _ { 23 } } \\ { c _ { 31 } } &{} { c _ { 32 } } &{} { c _ { 33 } } \end{array} \right] ,\\ {{\varvec{C}}}_{012}& = \left[ \begin{array}{cc}{c_{14}}&{}{c_{15}}\\ {c_{24}}&{}{c_{25}}\\ {c_{34}}&{}{c_{35}}\end{array}\right] ,\\ {{\varvec{C}}}_{021}& = \left[ \begin{array}{lll} {c_{41}}&{}{c_{42}}&{}{c_{43}}\\ {c_{51}}&{}{c_{52}}&{}{c_{53}}\end{array}\right] ,\\ {{\varvec{C}}} _ { 022 }& = \left[ \begin{array}{ l l } { c _ { 44 } } &{} { c _ { 45 } } \\ { c _ { 54 } } &{} { c _ { 55 } } \end{array} \right] ,\\ c_{11}& = c_{12}=0;\\ c_{13}& = \left( - \frac{ 1 }{ 2 } l _ { 1 } m _ { 1 } - l _ { 1 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 3 }m_{3}-l_{ 1}m_{4}\right) \cos \theta _{1}\cos (\varphi ){\dot{\varphi }}\\&+\left( \frac{1}{2}l_{2}m_{2}+l_{4 }m_{3}+\frac{1}{2}l_{4}m_{4}\right) \cos \varphi \sin (\theta _{2}){\dot{\varphi }};\\ c_{14}& = \left( -\frac{1}{2}l_{1}m_{1}-l_{1}m_{3}+\frac{1}{2}l_{3}m_{3}-l_{1}m_{4}\right) \cos \theta _{1}\cos (\varphi ){\dot{\theta }}_{1}\\&+(l_{1}m_{1}+2l_{1}m_{3}-l_{3}m_{3}+2l_{1}m_{4})\sin \theta _{1}\sin (\varphi ){\dot{\varphi }};\\ c_{15}& = \left( \frac{ 1 }{ 2 } l _ { 2 } m _ { 2 } + l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 4 } m _ { 4 } \right) \cos \varphi \sin (\theta _{2}){\dot{\theta }} _ { 2 } + ( l _ { 2 } m _ { 2 } \\&+2 l _ { 4 } m _ { 3 } + l _ { 4 } m _ { 4 } ) \cos \theta _ { 2 } \sin (\varphi ){\dot{\varphi }};\\ c_{21}& = c_{22}=0;\\ c_{23}& = \left( - \frac{ 1 }{ 2 } l _ { 1 } m _ { 1 } - l _ { 1 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 3 } m _ { 3 } - l _ { 1 } m _ { 4 } \right) \cos \theta _ { 1 } \sin (\varphi ){\dot{\varphi }} \\&+\left( \frac{ 1 }{ 2 } l _ { 2 } m _ { 2 } + l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 4 } m _ { 4 } \right) \sin \theta _ { 2 } \sin (\varphi ){\dot{\varphi }};\\ c_{24}& = \left( - \frac{ 1 }{ 2 } l _ { 1 } m _ { 1 } - l _ { 1 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 3 } m _ { 3 } - l _ { 1 } m _ { 4 }\right) \cos \theta _ { 1 } \sin (\varphi ){\dot{\theta }} _ { 1 }\\&-( l _ { 1 } m _ { 1 } + 2 l _ { 1 } m _ { 3 } - l _ { 3 } m _ { 3 } + 2 l _ { 1 } m _ { 4 } ) \cos \varphi \sin (\theta _{1}){\dot{\varphi }};\\ c_{25}& = \left( \frac{ 1 }{ 2 } l _ { 2 } m _ { 2 } + l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 4 } m _ { 4 }\right) \sin \theta _{2}\sin (\varphi ){\dot{\theta }} _ { 2 } -( l _ { 2 } m _ { 2 }\\&+2 l _ { 4 } m _ { 3 } + l _ { 4 } m _ { 4 }) \cos \theta _ { 2 } \cos (\varphi ){\dot{\varphi }}; \\ c_{31}& = c_{32}=c_{33}=0;\\ c_{34}& = \left( - \frac{ 2 }{ 3 } l _ { 1 } ^ { 2 } m _ { 1 } - 2 l _ { 1 } ^ { 2 } m _ { 3 } + 2 l _ { 1 } l _ { 3 } m _ { 3 } - \frac{ 2 }{ 3 } l _ { 3 } ^ { 2 } m _ { 3 } - 2 l _ { 1 } ^ { 2 } m _ { 4 }\right) \\&\quad \cos \theta _ { 1 }\sin ( \theta _ { 1 } ) {\dot{\varphi }}+(2 l_1 l_4 m_3-l_3 l_4 m_3+l_1 l_4 m_4)\sin \theta _{ 1}\\&\quad \sin (\theta _{2}){\dot{\varphi }};\\ c_{35}& = -( 2 l _ { 1 } l _ { 4 } m _ { 3 } - l _ { 3 } l _ { 4 } m _ { 3 } + l _ { 1 } l _ { 4 } m _ { 4 }) \cos \theta _ { 1 } \cos ( \theta _ { 2 } ) {\dot{\varphi }} \\&+\left( \frac{ 2 }{ 3 } l _ { 2 } ^ { 2 } m _ { 2 } + 2 l _ { 4 } ^ { 2 } m _ { 3 } + \frac{ 2 }{ 3 } l _ { 4 } ^ {2} m _ { 4 }\right) \cos \theta _ { 2 } \sin ( \theta _ { 2 }){\dot{\varphi }};\\ c_{41}& = c_{42}=0;\\ c_{43}& = \left( \frac{ 1 }{ 3 } l _ { 1 } ^ { 2 } m _ { 1 } + l _ { 1 } ^ { 2 } m _ { 3 } - l _ { 1 } l _ { 3 } m _ { 3 } + \frac{ 1 }{ 3 } l _ { 3 } ^ { 2 } m _ { 3 } + l _ { 1 } ^ { 2 } m _ { 4 }\right) \cos \theta _ { 1 } \\&\quad \sin ( \theta _ { 1 } ) {\dot{\varphi }}+( - l _ { 1 } l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 3 } l _ { 4 } m _ { 3 } - \frac{ 1 }{ 2 } l _ { 1 } l _ { 4 } m _ { 4 }) \sin \theta _ { 1 }\\&\quad \sin ( \theta _ { 2 }) {\dot{\varphi }};\\ c_{44}& = 0;\\ c_{45}& = \left( -l_{1}l_{ 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 3 } l _ { 4 } m _ { 3 } - \frac{ 1 }{ 2 } l _ { 1 } l _ { 4 } m _ { 4 }\right) \cos ( \theta _ { 1 } - \theta _ { 2 }) {\dot{\theta }} _ { 2 };\\ c_{51}& = c_{52}=0;\\ c_{53}& = \left( l _ { 1 } l _ { 4 } m _ { 3 } - \frac{ 1 }{ 2 } l _ { 3 } l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 1 } l _ { 4 } m _ { 4 } \right) \cos \theta _ { 1 } \cos ( \theta _ { 2 } ) {\dot{\varphi }} \\&- \left( \frac{ 1 }{ 3 } l _ { 2 } ^ { 2 } m _ { 2 } + l _ { 4 } ^ { 2 } m _ { 3 } + \frac{ 1 }{ 3 } l _ { 4 } ^ { 2 } m _ { 4 } \right) \cos \theta _ { 2 } \sin ( \theta _ { 2 } ) {\dot{\varphi }};\\ c_{54}& = \left( l _ { 1 } l _ { 4 } m _ { 3 } - \frac{ 1 }{ 2 } l _ { 3 } l _ { 4 } m _ { 3 } + \frac{ 1 }{ 2 } l _ { 1 } l _ { 4 } m _ { 4 } \right) \cos ( \theta _ { 1 } - \theta _ { 2 } ) {\dot{\theta }} _ { 1 };\\ c_{55}& = 0; \end{aligned}$$

Matrix \({\varvec{G}}\):

$$\begin{aligned} {{\varvec{G}}} = \left[ \begin{array}{ c } { 0 } \\ { 0 } \\ { 0 } \\ {\left( \dfrac{ 1 }{ 2 } l _ { 1 } m _ { 1 } + l _ { 1 } m _ { 3 } - \dfrac{ 1 }{ 2 } l _ { 3 } m _ { 3 } + l _ { 1 } m _ { 4 }\right) g \cos \theta _ { 1 } } \\ { - \left( \dfrac{ 1 }{ 2 } l _ { 2 } m _ { 2 } + l _ { 4 } m _ { 3 } + \dfrac{ 1 }{ 2 } l _ { 4 } m _ { 4 }\right) g \sin \theta _ { 2 } } \end{array} \right] , \end{aligned}$$
(46)

1.2 7.2 For equation (14), i.e., \({{\varvec{M}}\ddot{{\varvec{q}}}+{{\varvec{C}}}\dot{{\varvec{q}}}+{{\varvec{G}}}}+{\varvec{d}}(t)=\varvec{Bu}\)

Matrix \({\varvec{B}}\):

$$\begin{aligned} \varvec{ B } = \left[ \begin{array}{ c c } { \dfrac{ n k _ { t } }{ r R _ { a } } {{\varvec{B}}} _ { 0 } } &{} { {\mathbf {0}} _ { 3 \times 2 } } \\ { {\varvec{0}} _ { 2 \times 3 } } &{} { \dfrac{ nk _ {t} }{ R _ { a } } {{\varvec{I}}} _ { 2 \times 2 } } \end{array} \right] \end{aligned}$$
(47)

where:

$$\begin{aligned} \begin{aligned} {{\varvec{B}} } _ { 0 } = \left[ \begin{array}{ c c c } { - \sin \varphi } &{} { - \dfrac{ \sqrt{ 3 } }{ 2 } \cos \varphi + \dfrac{ 1 }{ 2 } \sin \varphi } &{} { \dfrac{ \sqrt{ 3 } }{ 2 } \cos \varphi + \dfrac{ 1 }{ 2 } \sin \varphi } \\ { \cos \varphi } &{} { - \dfrac{ \sqrt{ 3 } }{ 2 } \sin \varphi - \dfrac{ 1 }{ 2 } \cos \varphi } &{} { \dfrac{ \sqrt{ 3 } }{ 2 } \sin \varphi - \dfrac{ 1 }{ 2 } \cos \varphi } \\ { L _ { 0 } } &{} { L _ { 0 } } &{} { L _ { 0 } }\end{array} \right] . \end{aligned} \end{aligned}$$

The relationship between the input voltage \(u_i\) and the motor output torque \(T_i\) is shown as follows:

$$\begin{aligned} \frac{k_t}{R_a}u_i=\left\{ \begin{array}{ll} I_{md}\cdot {w}_i+\left( b_{0d}+\dfrac{k_t k_b}{R_a}\right) w_i+\dfrac{r}{n}T_i,&{} i=1,2,3\\ I_{mu}\cdot {w}_i+\left( b_{0u}+\dfrac{k_t k_b}{R_a}\right) w_i+\dfrac{T_i}{n},&{} i=4,5 \end{array} \right. \end{aligned}$$

where \(w_i\) represents the output angular velocity of the motor.

The relationship between the generalized torque \({\varvec{\tau }}\) and the motor output torque \({\varvec{T}}=[T_1,T_2,T_3,T_4,T_5]^T\) is:

$$\begin{aligned} {\varvec{\tau }}= \left[ \begin{array}{cc} {\varvec{B}}_0 &{} {\varvec{0}}_{3\times 2}\\ {\varvec{0}}_{2\times 3} &{} {\varvec{I}}_{2\times 2} \end{array} \right] {\varvec{T}}. \end{aligned}$$

Matrix \({\varvec{M}}\):

Define \({\varvec{B}}_{1}={{\varvec{B}}_0}^T.\) Then:

$$\begin{aligned} \varvec{M}=\left[ \begin{array}{cc}{{{\varvec{M}} } _ { 011 } + \dfrac{ n ^ { 2 } I _ { m d} }{ r ^ { 2 } } {{\varvec{B}} } _ { 0 } {{\varvec{B}}}_{1} } &{} { {{\varvec{M}} } _ { 012 } } \\ { {{\varvec{M}} } _ { 021 } } &{} { {{\varvec{M}} } _ { 022 } + n ^ { 2 } I _ { m u} {{\varvec{I}} } _ { 2\times 2 } } \end{array} \right] \end{aligned}$$
(48)

Matrix \({\varvec{C}}\) and \({\varvec{G}}\):

$$\begin{aligned} \varvec{C}=\left[ \begin{array}{cc} {{\varvec{C}}}_{11}&{} {{\varvec{C}}}_{12}\\ {{\varvec{C}}}_{21}&{}{{\varvec{C}}}_{22} \end{array}\right] , \end{aligned}$$
(49)
$$\begin{aligned} \begin{aligned} {{\varvec{C}}}_{11}=&{{\varvec{C}}}_{011}+\dfrac{n^{2}I_{md}}{r^2}{{\varvec{B}}_0}{\dot{{\varvec{B}}}_{1}}+\dfrac{n^2}{r^2}\left( b_{0d}+\dfrac{k_t k_b}{R_a}\right) {\varvec{B}}_{0} {\varvec{B}}_{1},\\ {\varvec{C}}_{12}=&{\varvec{C}}_{012},\\ {\varvec{C}}_{21}=&{\varvec{C}}_{021},\\ {{\varvec{C}}}_{22}=&{{\varvec{C}}}_{022}+n^2(b_{0u}+\frac{k_t k_b}{R_a}){\varvec{I}}_{2\times 2}.\\ \end{aligned} \end{aligned}$$

\({\varvec{G}}\) is shown in Eq. (46).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ren, C., Ding, Y. et al. Non-singular terminal sliding mode control of an omnidirectional mobile manipulator based on extended state observer. Int J Intell Robot Appl 5, 219–234 (2021). https://doi.org/10.1007/s41315-021-00184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00184-1

Keywords

Navigation