Skip to main content
Log in

Trajectory planning for mobile manipulators including Manipulability Percentage Index

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This article addresses the problem of the achievement of Operational Point to Point Tasks by mobile manipulators (MMs). An operational target point (tp) is the objective to be reached by the end-effector of a manipulator mounted on a wheeled mobile robot. The assigned task is realizable from many ways. Several potential feasible trajectories can be generated and several final postures of the robot can be selected to reach the tp. Dealing with the presented problem means finding the best way to reach tp. New singularity avoidance metric named Manipulability Percentage Index (MPI) is introduced in this article in order to place the mobile robot on areas guaranteeing regular reachability. The MPI is included in a trajectory planning process for reaching tp. The compromise between the minimum time for performing the task and the value of the MPI index is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

MMs:

Mobile manipulators

MPI:

Manipulability Percentage Index

dof :

Degrees of freedom

EF:

End-effector

GPPT:

Generalized Point to Point Task

OPPT:

Operational Point to Point Task

tp :

Imposed target point

S:

Reaching area

IKM MM :

Inverse kinematic model of the mobile manipulator

P(t):

Trajectory profile

\(P^{{{\text{init}}}}\) :

Initial posture of the mobile manipulator

\(P^{{{\text{end}}}}\) :

Final posture of the mobile manipulator

\(q^{{{\text{init}}}}\) :

Initial configuration of the mobile manipulator

\(q^{{{\text{end}}}}\) :

Final configuration of the mobile manipulator

\(P_{p}^{init}\) :

Initial posture of the mobile robot

\(P_{p}^{end}\) :

Final posture of the mobile robot

\(q_{m}^{{{\text{init}}}}\) :

Initial configuration of the manipulator

\(q_{m}^{{{\text{end}}}}\) :

Final configuration of the manipulator

\({\text{Man}}(q_{m}^{{{\rm{end}}}} )\) :

Manipulability Index

\(\% \sigma_{{{\text{MPI}}}}\) :

MPI threshold

\(\sigma_{{{\text{Man}}}}\) :

Manipulability threshold

References

  • Akli, I.: Experimental analysis of the performance of mobile manipulators executing generalized point-to-point tasks. Arab. J. Sci. Eng. 45, 2327–2339 (2020)

  • Akli, I., Haddad, M., Bouzouia, B., Achour, N.: Trajectory generation for operational task execution with manipulability analysis. 15th IEEE International Conference on Advanced Robotics (ICAR), pp. 94–99 (2011)

  • Akli, I., Bouzouia, B., Achour, N.: Motion analysis of a mobile manipulator executing pick-up tasks. Comput. Electr. Eng. 43, 257–269 (2015)

    Article  Google Scholar 

  • Andaluz, V., Roberti, F., Toibero, J.M., Carelli, R.: Adaptive unified motion control of mobile manipulators. Control Eng. Pract. 20(12), 1337–1352 (2012)

    Article  Google Scholar 

  • Bayle, B., Fourquet, J.Y., Renaud, M.: Manipulability of wheeled mobile manipulators: Application to motion generation. Int. J. Robot. Res. 22, 565–581 (2003)

    Article  Google Scholar 

  • Cui, Z., Cao, P., Shao, Y.-M., Qian, D.-H., Wang, X.-C.: Trajectory planning for a redundant mobile manipulator using avoidance manipulability. IEEE International Conference on Automation and Logistics, pp. 283–288 (2009)

  • Dharmawan, A.G., Foong, S., Soh, G.S.: Simultaneous optimal robot base placement and motion planning using expanded Lagrangian Homotopy. ASME International Mechanical Engineering Congress and Exposition, pp. 1–10 (2016)

  • Hassan, M., Liu, D., Paul, G., Huang, S.: An approach to base placement for effective collaboration of multiple autonomous industrial robots. IEEE International Conference on Robotics and Automation (ICRA), pp. 3286–3291 (2015)

  • Hentout, A., Messous, M.A., Bouzouia, B.: Fault-tolerant multi-agent control architecture for autonomous mobile manipulators: simulation results. Comput. Electr. Eng. 43, 238–256 (2015)

    Article  Google Scholar 

  • Hu, C., Chen, W., Wang, J., Wang, H.: Optimal path planning for mobile manipulator based on manipulability and localizability. IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 638–643 (2016)

  • Hvilshøj, M., Bøgh, S., Skov Nielsen, O., Madsen, O.: Autonomous industrial mobile manipulation (AIMM): Past, present and future. Ind. Robot. 39(2), 120–135 (2012)

    Article  Google Scholar 

  • Korayem, M.H., Nikoobin, A.: Maximum-slem. Int. J. Adv. Manuf. Technol. 44(7–8), 725–736 (2009)

    Article  Google Scholar 

  • Korayem, M.H., Rafee, S.: Finite-time state-dependent Riccati equation for time-varying nonaffine systems: Rigid and flexible joint manipulator control. ISA Trans. 54(6), 125–144 (2015)

    Article  Google Scholar 

  • Korayem, M.H., Shafei, A.M.: Application of recursive gibbs appell formulation in deriving the equation of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko Beam theory. Acta Astronaut. 83, 273–294 (2013)

    Article  Google Scholar 

  • Korayem, M.H., Gariblu, H., Basu, A.: Dynamic load carrying capacity of mobile base flexible joint manipulators. Int. J. Adv. Manuf. Technol. 25(1–2), 62–70 (2005)

    Article  Google Scholar 

  • Korayem, M.H., Nazemizadeh, M., Nohooji, H.R.: Smooth jerk-bounded optimal path planning of tricycle wheeled mobile manipulators in the presence of environmental obstacles. Int. J. Adv. Robot. Syst. 9, 105 (2012)

    Article  Google Scholar 

  • Mashali, M., Wu, L., Alqasemi, R., Dubey, R.: Controlling a non-holonomic mobile manipulator in a constrained floor space. IEEE International Conference on Robotics and Automation (ICRA), pp. 725–731 (2018)

  • Merkt, W., Yang, Y., Stouraitis, T., Mower, C.E., Fallon, M., Vijayakumar, S.: Robust shared autonomy for mobile manipulation with continuous scene monitoring. IEEE Conference on Automation Science and Engineering (CASE), pp. 130–137 (2017)

  • Nait-Chabane, K., Hoppenot, P., Colle, E.: Mobile arm for disabled people assistance manipulability measure for redundancy solve. J. Intell. Rob. Syst. 47(1), 33–54 (2006)

    Article  Google Scholar 

  • Navarro, B., Cherubini, A., Fonte, A., Poisson, G., Fraisse, P. : A Framework for intuitive collaboration with a mobile manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6293–6298 (2017)

  • Pajak, G., Pajak, I.: Point-to-point collision-free trajectory planning for mobile manipulators. J. Intell. Rob. Syst. 85, 523–538 (2017)

    Article  Google Scholar 

  • Papadopoulos, E., Papadimitriou, I., Poulakakis, I.: Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems. Robot. Auton. Syst. 51(4), 229–247 (2005)

    Article  Google Scholar 

  • Tanaka, H., Minami, M., Mae, Y.: Evaluation of obstacle avoidance ability for redundant mobile manipulators. Annual Conference of IEEE Industrial Electronics Society, pp. 1768–1773 (2005)

  • Teka, B., Jangid, H., Raja, R., Dutta, A.: Advanced KSOM based redundancy resolution of a mobile manipulator system for motion on an Uneven Terrain. Proceedings of the Advances in Robotics, pp. 1–6 (2017)

  • Vahrenkamp, N., Asfour, T.: Representing the robot’s workspace through constrained manipulability analysis. Auton. Robot. 38(1), 17–30 (2015)

    Article  Google Scholar 

  • Vahrenkamp, N., Asfour, T., Dillmann, R.: Efficient inverse kinematics computation based on reachability analysis. Int. J. Humanoid. Robot. 9(4), 1250035 (2012)

    Article  Google Scholar 

  • Vahrenkamp, N., Asfour, T., Dillmann, R.: Robot placement based on reachability inversion. IEEE International Conference on Robotics and Automation, pp. 1970–1975 (2013)

  • Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)

    Article  Google Scholar 

  • Yu, Q., Wang, G., Ren, T., Hua, X., Chen, K.: Starting base position optimization in integrated task planning for mobile manipulators painting large workpieces. In: ASME 2017 International Mechanical Engineering Congress and Exposition, pp. 1–10 (2017)

  • Zhang, Y., Xiao, L., Yu, X., Liao, B., Zhang, Z.: Minimum movement scheme with wheels and joints coordinated simultaneously for mobile redundant manipulator. IEEE International Conference on Information and Automation (ICIA), pp. 910–915 (2013)

  • Zhang, Y., Yan, X., Chen, D., Guo, D., Li, W.: QP-based refined manipulability-maximizing scheme for coordinated motion planning and control of physically constrained wheeled mobile redundant manipulators. Nonlinear Dyn. 85, 245–261 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isma Akli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akli, I. Trajectory planning for mobile manipulators including Manipulability Percentage Index. Int J Intell Robot Appl 5, 543–557 (2021). https://doi.org/10.1007/s41315-021-00190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00190-3

Keywords

Navigation