Skip to main content

Advertisement

Log in

Multi-objective offline and online path planning for UAVs under dynamic urban environment

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This paper presents a multi-objective hybrid path planning method MOHPP for unmanned aerial vehicles (UAVs) in urban dynamic environments. Several works have been proposed to find optimal or near-optimal paths for UAVs. However, most of them did not consider multiple decision criteria and/or dynamic obstacles. In this paper, we propose a multi-objective offline/online path planning method to compute an optimal collision-free path in dynamic urban environment, where two objectives are considered: the safety level and the travel time. First, we construct two models of obstacles; static and dynamic. The static obstacles model is based on Fast Marching Square (FM2) method to deal with the uncertainty of the geography map, and the unexpected dynamic obstacles model is constructed using the perception range and the safety distance of the UAV. Then, we develope a jointly offline and online search mechanism to retrieve the optimal path. The offline search is applied to find an optimal path vis-a-vis the static obstacles, while the online search is applied to quickly avoid unexpected dynamic obstacles. Several experiments have been performed to prove the efficiency of the proposed method. In addition, a Pareto front is extracted to be used as a tool for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. https://www.youtube.com/channel/UCnO1PwAHU-SP2jDYca36nww

References

  • Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D., Yanikomeroglu, H.: Airborne communication networks: a survey. IEEE J. Sel. Areas Commun. 36(9), 1907–1926 (2018)

    Article  Google Scholar 

  • Casbeer, D.W., Beard, R.W., McLain, T.W., Li, S.-M., Mehra, R.K.: Forest fire monitoring with multiple small uavs. In: Proceedings of the 2005, American Control Conference, vol. 5, pp. 3530–3535. IEEE (2005). https://doi.org/10.1109/ACC.2005.1470520

  • Chen, Y., Yu, J., Mei, Y., Wang, Y., Su, X.: Modified central force optimization (mcfo) algorithm for 3d uav path planning. Neurocomputing 171, 878–888 (2016)

    Article  Google Scholar 

  • Di Caro, G., Dorigo, M.: Ant colony optimization and its application to adaptive routing in telecommunication networks. Dissertation, PhD thesis, Faculté des Sciences Appliquées, Université Libre de Bruxelles, Brussels, Belgium (2004)

  • Doherty, P., Rudol, P.: A uav search and rescue scenario with human body detection and geolocalization. In: Orgun M.A., Thornton J. (eds.) AI 2007: Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 4830. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76928-6_1

  • Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceeding of Ieee International Conference on Neural Network. Perth, Australia pp. 1942–1948 (1995)

  • Fu, Y., Ding, M., Zhou, C.: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for uav. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 42(2), 511–526 (2012)

    Article  Google Scholar 

  • Gigras, Y., Choudhary, K., Gupta, K., Vandana.: A hybrid aco-pso technique for path planning. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1616–1621 (2015)

  • Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous uav guidance. J. Intell. Rob. Syst. 57(1–4), 65 (2010)

    Article  Google Scholar 

  • González, V., Monje, C.A., Moreno, L., Balaguer, C.: Fast marching square method for uavs mission planning with consideration of dubins model constraints. IFAC-PapersOnLine 49(17), 164–169 (2016)

    Article  Google Scholar 

  • Hao, Y., Li, B., Shao, L., Zhang, Y., Cui, J.: Multi-objective path planning for unmanned aerial vehicle based on mixed integer programming. In: Chinese Automation Congress (CAC), 2017, pp. 7035–7039 (2017). https://doi.org/10.1109/CAC.2017.8244046

  • Hernández-Hernández, L., Tsourdos, A., Shin, H., Waldock, A.: Multi-objective uav routing. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 534–542 (2014). https://doi.org/10.1109/ICUAS.2014.6842295

  • Jaradat, M.A.K., Al-Rousan, M., Quadan, L.: Reinforcement based mobile robot navigation in dynamic environment. Robot. Comput.-Integr. Manuf. 27(1), 135–149 (2011)

    Article  Google Scholar 

  • Khaksar, W., Hong, T.S., Khaksar, M., Motlagh, O.R.E.: A genetic-based optimized fuzzy-tabu controller for mobile robot randomized navigation in unknown environment. Int. J. Innov. Comput. Inf. Control 9(5), 2185–2202 (2013)

    Google Scholar 

  • Khaksar, W., Vivekananthen, S., Saharia, K.S.M., Yousefi, M., Ismail, F.B.: A review on mobile robots motion path planning in unknown environments. In: 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp. 295–300. IEEE (2015). https://doi.org/10.1109/IRIS.2015.7451628

  • Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles. Springer, New York, NY (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  • Knuth, D.: A generalization of Dijkstra's algorithm. Inf. Proc. Lett. 6, 1–7 (1977)

    Article  MathSciNet  Google Scholar 

  • LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. pp. 98–111 (1998)

  • Lin, Y., Saripalli, S.: Collision avoidance for uavs using reachable sets. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 226–235 (2015). https://doi.org/10.1109/ICUAS.2015.7152295

  • Macharet, D.G., Neto, A.A., Campos, M.F.M.: Feasible uav path planning using genetic algorithms and bézier curves. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) Advances in Artificial Intelligence – SBIA 2010. SBIA 2010. Lecture Notes in Computer Science, vol. 6404. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16138-4_23

  • Ma’sum, M.A., et al.: Simulation of intelligent unmanned aerial vehicle (uav) for military surveillance. In: 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 161–166 (2013). https://doi.org/10.1109/ICACSIS.2013.6761569

  • Mittal, S., Deb, K.: Three-dimensional offline path planning for uavs using multiobjective evolutionary algorithms. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3195–3202 (2007). https://doi.org/10.1109/CEC.2007.4424880

  • Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Uavs for smart cities: opportunities and challenges. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 267–273 (2014). https://doi.org/10.1109/ICUAS.2014.6842265

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  • Pehlivanoglu, Y.V.: A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous uav. Aerosp. Sci. Technol. 16(1), 47–55 (2012)

    Article  Google Scholar 

  • Primatesta, S., Cuomo, L.S., Guglieri, G., Rizzo, A.: An innovative algorithm to estimate risk optimum path for unmanned aerial vehicles in urban environments. Transport. Res. Proc. 35, 44–53 (2018)

    Article  Google Scholar 

  • Raja, P., Pugazhenthi, S.: Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 7(9), 1314–1320 (2012)

    Article  Google Scholar 

  • Roberge, V., Tarbouchi, M., Labonté, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time uav path planning. IEEE Trans. Ind. Inf. 9(1), 132–141 (2013)

    Article  Google Scholar 

  • Thiels, C.A., Aho, J.M., Zietlow, S.P., Jenkins, D.H.: Use of unmanned aerial vehicles for medical product transport. Air Med. J. 34(2), 104–108 (2015)

    Article  Google Scholar 

  • Valero-Gomez, A., Gomez, J.V., Garrido, S., Moreno, L.: The path to efficiency: Fast marching method for safer, more efficient mobile robot trajectories. IEEE Robot. Autom. Mag. 20(4), 111–120 (2013)

    Article  Google Scholar 

  • Wen, N., Su, X., Ma, P., Zhao, L., Zhang, Y.: Online uav path planning in uncertain and hostile environments. Int. J. Mach. Learn. Cybern. 8(2), 469–487 (2017)

    Article  Google Scholar 

  • Wu, P.P.Y., Campbell, D., Merz, T.: Multi-objective four-dimensional vehicle motion planning in large dynamic environments. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 41(3), 621–634 (2011)

    Article  Google Scholar 

  • Wu, J., Wang, H., Li, N., Yao, P., Huang, Y., Yang, H.: Path planning for solar-powered uav in urban environment. Neurocomputing 275, 2055–2065 (2018)

    Article  Google Scholar 

  • Yang, P., Tang, K., Lozano, J.A., Cao, X.: Path planning for single unmanned aerial vehicle by separately evolving waypoints. IEEE Trans. Rob. 31(5), 1130–1146 (2015)

    Article  Google Scholar 

  • Yang, Q., Yoo, S.J.: Optimal uav path planning: Sensing data acquisition over iot sensor networks using multi-objective bio-inspired algorithms. IEEE Access 6, 13671–13684 (2018)

    Article  Google Scholar 

  • Yin, C., Xiao, Z., Cao, X., Xi, X., Yang, P., Wu, D.: Offline and online search: Uav multiobjective path planning under dynamic urban environment. IEEE Internet Things J. 5(2), 546–558 (2018)

    Article  Google Scholar 

  • Yun, S.C., Parasuraman, S., Ganapathy, V.: Dynamic path planning algorithm in mobile robot navigation. In: 2011 IEEE Symposium on Industrial Electronics and Applications, pp. 364–369 (2011). https://doi.org/10.1109/ISIEA.2011.6108732

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassim Sadallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadallah, N., Yahiaoui, S., Bendjoudi, A. et al. Multi-objective offline and online path planning for UAVs under dynamic urban environment. Int J Intell Robot Appl 6, 119–138 (2022). https://doi.org/10.1007/s41315-021-00195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00195-y

Keywords

Navigation