Skip to main content
Log in

Rbot: development of a robot-driven radio base station maintenance system

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

A Correction to this article was published on 09 November 2021

This article has been updated

Abstract

This work describes the development of RBOT, a robot-driven radio base station maintenance system. RBS deployment and maintenance tasks are increasing both in complexity and density with the introduction of 5G microcells. The main objective behind our application is to reduce maintenance costs by developing an integrated system based on a robotic arm to operate on the RBS front plane. This work details the challenges and solutions for maintaining the connectivity of networking cables in such an environment. More specifically, it discusses the problems of inserting communication cables and removing defective ones attached to an RBS equipment. We also examine the creation and evolution of a maintenance system from a simulation scenario to a real-world setup. RBOT’s interface allows both remote teleoperation and autonomous operation. It also contains Augmented Reality features providing a first-person view for remote teleoperation to increase environmental awareness. Furthermore, by applying convolutional neural networks for faulty cable classification, RBOT can actuate over the RBS and manipulate the cables with a unique, accurate, and robust gripper we specially designed for cable connector handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

Notes

  1. https://bit.ly/3bwCHGW.

  2. https://bit.ly/2WPfqKW.

  3. https://www.rabbitmq.com.

  4. https://www.autodesk.com/products/fusion-360/overview.

References

  • Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning—a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13 (2010). https://doi.org/10.1109/MCI.2010.938364

    Article  Google Scholar 

  • Benvenuto, R., Salvi, S., Lavagna, M.: Dynamics analysis and GNC design of flexible systems for space debris active removal. Acta Astronaut. (2015). https://doi.org/10.1016/j.actaastro.2015.01.014. (dynamics and control of space systems)

    Article  Google Scholar 

  • Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145 (1997). https://doi.org/10.1016/S0031-3203(96)00142-2

    Article  Google Scholar 

  • Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: Hybrid task cascade for instance segmentation. arXiv:abs/1901.07518 (2019)

  • D’Amore, G.: RF Testing During the Installation and Maintenance of Wireless Base Stations, High Frequency Electronics, pp. 24–25 (2009)

  • Ge, X., Tu, S., Mao, G., Wang, C., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72 (2016). https://doi.org/10.1109/MWC.2016.7422408

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. (2016)http://www.deeplearningbook.org. Accessed 3 Oct 2021

  • Gordejuela-Sanchez, F., Zhang, J.: In: IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference, pp. 1–5 (2008)

  • Hamid, O.H., Smith, N.L., Barzanji, A.: In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 899–904 (2017). https://doi.org/10.1109/INDIN.2017.8104891

  • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90 (2016)

  • Hida, M., He, Y., Yamamoto, Y., Maekawa, N., Tatsuno, K., Kunii, Y.: A task analysis and a controller system design for a power distribution line maintenance robot. In: 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI), pp. 102–107 (2012)

  • Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154. IEEE (2004)

  • Lai, C.: In: Proceedings of the 2019 The 3rd International Conference on Digital Technology in Education (Association for Computing Machinery, New York, NY, USA, 2019), ICDTE, pp. 57-61 (2019). https://doi.org/10.1145/3369199.3369230

  • Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  • Lim, R.S., La, H.M., Shan, Z., Sheng, W.: Developing a crack inspection robot for bridge maintenance In: 2011 IEEE International Conference on Robotics and Automation, pp. 6288–6293 (2011)

  • Liu, Y., Tu, Y., Hsu, C., Chao, H.: Predicting malfunction of mobile network base station using machine learning approach In: 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4 (2019)

  • Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration CoRR. arXiv:abs/1805.07071 (2018)

  • Lynxmotion: Lynxmotion—little grip kit (no servos) (2020). http://www.lynxmotion.com/p-161-little-grip-kit-no-servos.aspx. Accessed 3 Oct 2021

  • Merkel, D.: Docker: lightweight linux containers for consistent development and deployment. Linux J. 2014(239), 2 (2014)

    Google Scholar 

  • Oughton, E.J., Frias, Z.: The cost, coverage and rollout implications of 5G infrastructure in Britain. Telecommun. Policy 42(8), 636 (2018). https://doi.org/10.1016/j.telpol.2017.07.009. (the implications of 5G networks: paving the way for mobile innovation?)

    Article  Google Scholar 

  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software. Kobe, Japan (2009)

  • Rahman, A., Jin, J., Cricenti, A.L., Rahman, A., Kulkarni, A.: Communication-aware cloud robotic task offloading with on-demand mobility for smart factory maintenance. IEEE Trans. Ind. Inform. 15(5), 2500 (2019)

    Article  Google Scholar 

  • Rao, S.K., Prasad, R.: Impact of 5G technologies on industry 4.0. Wirel. Pers. Commun. 100(1), 145 (2018)

    Article  Google Scholar 

  • Reis, G., Dantas, M., Bezerra, D., Nunes, G., Dreyer, P., Ledebour, C., Kelner, J., Sadok, D., Souza, R., Lins, S., Marquezini, M.: Gripper design for radio base station autonomous maintenance system. Int. J. Autom. Comput. (2021). https://doi.org/10.1007/s11633-021-1300-5

    Article  Google Scholar 

  • Robotics, T.: Phantomx parallel ax-12 gripper (2020). https://www.trossenrobotics.com/p/phantomx-parallel-ax12-gripper.aspx. Accessed 3 Oct 2021

  • Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 1 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  • Smith, N., Teerawanit, J., Hamid, O.H.: In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3255–3260 (2018). https://doi.org/10.1109/SMC.2018.00551

  • Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345 (1989). https://doi.org/10.1109/70.34770

    Article  Google Scholar 

  • Volochiy, B., Zmysnyi, M., Kulyk, I.: In: 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), pp. 592–594 (2016)

  • Yaghoubi, F., Mahloo, M., Wosinska, L., Monti, P., Farias, Fd.S., Costa, J.C.W.A., Chen, J.: A techno-economic framework for 5G transport networks. IEEE Wirel. Commun. 25(5), 56 (2018). https://doi.org/10.1109/MWC.2018.1700233

    Article  Google Scholar 

  • Zhu, Y., Sapra, K., Reda, F.A., Shih, K.J., Newsam, S.D., Tao, A., Catanzaro, B.: Improving semantic segmentation via video propagation and label relaxation CoRR. arXiv:abs/1812.01593 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bezerra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original publication the section 4 has been inadvertently misspelled as "4 Network onfrastructure".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadok, D., Bezerra, D., Dantas, M. et al. Rbot: development of a robot-driven radio base station maintenance system. Int J Intell Robot Appl 6, 270–287 (2022). https://doi.org/10.1007/s41315-021-00206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00206-y

Keywords

Navigation