Skip to main content
Log in

Analytical describing function of LuGre friction model

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

LuGre friction model is a comprehensive model for friction, which can simulate important nonlinear phenomena such as stiction, Stribeck effect, variable break-away force, pre-sliding displacement, and frictional lag. In this paper, an analytical describing function (DF) for this friction model is derived. The theoretical analysis is examined by comparing its result with some existing experimental results. The determined DF can approximate the LuGre friction force with constant viscous damping in a sinusoidal motion. Afterwards, as an application, its effect on the stability of a haptic device (HD) is studied. For this purpose, some simulations in MATLAB software are performed by considering the HD as a one-degree of freedom system with an effective mass that moves with the LuGre friction model, and stability analysis is performed theoretically (using the DF of the LuGre) and compared with the simulation result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Boegli, M., De Laet, T., De Schutter, J., Swevers, J.: A smoothed gms friction model suited for gradient-based friction state estimation, in American Control Conference (ACC), 2012, pp. 2627–2632, IEEE (2012)

  • Cheng, L., Tavakoli, M.: A multilateral impedance-controlled system for haptics-enabled surgical training and cooperation in beating-heart surgery. Int. J. Intell. Robot. Appl. 3(3), 314–325 (2019)

    Article  Google Scholar 

  • Do, T., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: A new approach of friction model for tendon-sheath actuated surgical systems: Nonlinear modelling and parameter identification. Mech. Mach. Theory 85, 14–24 (2015)

    Article  Google Scholar 

  • Dong, R.G., Wu, J.Z., Xu, X.S., Welcome, D.E., Krajnak, K.: A review of hand-arm vibration studies conducted by us niosh since 2000. Vibration 4(2), 482–528 (2021)

    Article  Google Scholar 

  • Gafvert, M.: Comparisons of two dynamic friction models, in Proceedings of the 1997 IEEE international Conference on Control applications, pp. 386–391, IEEE (1997)

  • Helmick, D., Messner, W.: Describing function analysis of dahl model friction, in 2009 American control conference, pp. 814–819, IEEE (2009)

  • Hulin, T., Camarero, R. G., Albu-Schaffer, A.: Optimal control for haptic rendering: Fast energy dissipation and minimum overshoot, in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 4505–4511, IEEE (2013)

  • Hulin, T., Albu-Schaffer, A., Hirzinger, G.: Passivity and stability boundaries for haptic systems with time delay. IEEE Trans. Control Syst. Technol. 22(4), 1297–1309 (2014)

    Article  Google Scholar 

  • Lee, W., Lee, C.-Y., Jeong, Y.H., Min, B.-K.: Distributed component friction model for precision control of a feed drive system. IEEE/ASME Trans. Mechatron. 20(4), 1966–1974 (2014)

    Article  Google Scholar 

  • Li, J., Zhou, X., Zhao, H., Shao, M., Li, N., Zhang, S., Du, Y.: Development of a novel parasitic-type piezoelectric actuator. IEEE/ASME Trans. Mechatron. 22(1), 541–550 (2016)

    Article  Google Scholar 

  • Lichtsinder, A., Gutman, P.O.: Quasi-analytical describing function for the karnopp friction model. IFAC Proc. Vol. 45(13), 381–386 (2012)

    Article  Google Scholar 

  • Liu, D.-P.: Parameter identification for lugre friction model using genetic algorithms, in 2006 International Conference on Machine Learning and Cybernetics, pp. 3419–3422, IEEE (2006)

  • Liu, Y., Li, J., Zhang, Z., Hu, X., Zhang, W.: Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 6(1), 15–28 (2015)

    Article  Google Scholar 

  • Mashayekhi, A., Boozarjomehry, R.B., Nahvi, A., Meghdari, A., Asgari, P.: Improved passivity criterion in haptic rendering: influence of coulomb and viscous friction. Adv. Robot. 28(10), 695–706 (2014)

    Article  Google Scholar 

  • Mashayekhi, A., Behbahani, S., Ficuciello, F., Siciliano, B.: Analytical stability criterion in haptic rendering: The role of damping. IEEE/ASME Trans. Mechatron. 23(2), 596–603 (2018)

    Article  Google Scholar 

  • Mashayekhi, A., Behbahani, S., Ficuciello, F., Siciliano, B.: Delay-dependent stability analysis in haptic rendering, Journal of Intelligent & Robotic Systems, pp. 1–13 (2019)

  • Mashayekhi, A., Behbahani, S., Ficuciello, F., Siciliano, B.: Influence of human operator on stability of haptic rendering: a closed-form equation. Int. J. Intell. Robot. Appl. 4, 403–415 (2020)

    Article  Google Scholar 

  • Mashayekhi, A., Nahvi, A., Meghdari, A., Shad, H. M.: A new haptic interaction with a visual tracker: implementation and stability analysis, International Journal of Intelligent Robotics and Applications, pp. 1–12 (2021)

  • Peng, Y.-C., Carabis, D.S., Wen, J.T.: Collaborative manipulation with multiple dual-arm robots under human guidance. Int. J. Intell. Robot. Appl. 2(2), 252–266 (2018)

    Article  Google Scholar 

  • Sharkawy, A.-N., Koustoumpardis, P.N., Aspragathos, N.: A recurrent neural network for variable admittance control in human-robot cooperation: simultaneously and online adjustment of the virtual damping and inertia parameters. Int. J. Intell. Robot. Appl. 4(4), 441–464 (2020)

    Article  Google Scholar 

  • Singh, J., Srinivasan, A.R., Neumann, G., Kucukyilmaz, A.: Haptic-guided teleoperation of a 7-dof collaborative robot arm with an identical twin master. IEEE Trans. Haptics 13(1), 246–252 (2020)

    Article  Google Scholar 

  • Sun, Y.-H.: Stability of controlled mechanical system with parametric uncertainties in a realistic friction model, PhD Thesis, University of Manitoba (2016)

  • Vidyasagar, M.: Nonlinear systems analysis. SIAM (2002)

  • Xia, J., Huang, D., Li, Y., Qin, N.: Iterative learning of human partner’s desired trajectory for proactive human-robot collaboration. Int. J. Intell. Robot. Appl. 4, 229–242 (2020)

    Article  Google Scholar 

  • Zhang, Q., Liu, G.: Precise control of elastic joint robot using an interconnection and damping assignment passivity-based approach. IEEE/ASME Trans. Mechatron. 21(6), 2728–2736 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mashayekhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashayekhi, A., Behbahani, S., Nahvi, A. et al. Analytical describing function of LuGre friction model. Int J Intell Robot Appl 6, 437–448 (2022). https://doi.org/10.1007/s41315-021-00220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00220-0

Keywords

Navigation