Skip to main content
Log in

Car detection and damage segmentation in the real scene using a deep learning approach

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Automatically detecting the outer car surface damage can considerably reduce the cost of processing premium assertion, and provide satisfaction for vehicle users. Since computer vision has a huge development among different research areas during recent years, the utilization of computer vision as a serious branch of science has also affected the object detection field. In this study, we develop an automated car and damage detection method based on a cascade Convolutional Neural Network (CNN). The presented method utilizes a pixel-based approach using two distinct CNNs, to determine the damage in outer region of a car among the achieved images. The experimental results indicate our proposed method obtains high performance in comparison to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The dataset used in this study can be obtained from the corresponding author on reasonable request.

References

  • Agarap, A.F.: Deep learning using rectified linear units (ReLU), March 2018, pp. 2–8 (2020)

  • Aghamohammadi, A., Ranjbarzadeh, R., Naiemi, F., Mogharrebi, M., Dorosti, S., Bendechache, M.: TPCNN: Two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach. Expert Syst. Appl. 183, 115406 (2021). https://doi.org/10.1016/J.ESWA.2021.115406

    Article  Google Scholar 

  • Akhtar, N., Ragavendran, U.: Interpretation of intelligence in CNN-pooling processes: a methodological survey. Neural Comput. Appl. 32(3), 879–898 (2020). https://doi.org/10.1007/s00521-019-04296-5

    Article  Google Scholar 

  • Al Saidi, I., Rziza, M., Debayle, J.: A new texture descriptor: the homogeneous local binary pattern (hlbp), vol. 12119. LNCS, Springer International Publishing (2020)

  • Aleem, S., Kumar, T., Little, S., Bendechache, M., Brennan, R., McGuinness, K.: Random data augmentation based enhancement: a generalized enhancement approach for medical datasets (2021)

  • Ali, W.A., Manasa, K.N., Bendechache, M., Aljunaid, M.F., Sandhya, P.: A review of current machine learning approaches for anomaly detection in network traffic. J Telecommun Digital Econ 8(4), 64–95 (2020). https://doi.org/10.18080/JTDE.V8N4.307

    Article  Google Scholar 

  • Amirfakhrian, M., Parhizkar, M.: Integration of image segmentation and fuzzy theory to improve the accuracy of damage detection areas in traffic accidents. J. Big Data (2021). https://doi.org/10.1186/s40537-021-00539-2

    Article  Google Scholar 

  • Balci, B., Artan, Y., Alkan, B., Elihos, A.: Front-view vehicle damage detection using roadway surveillance camera images. In: VEHITS 2019—Proc. 5th Int. Conf. Veh. Technol. Intell. Transp. Syst., pp. 193–198 (2019). https://doi.org/10.5220/0007724601930198.

  • Chávez-Aragón, A., Laganière, R., Payeur, P.: Vision-based detection and labelling of multiple vehicle parts. In: IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, pp. 1273–1278 (2011). https://doi.org/10.1109/ITSC.2011.6083072

  • Chen, K., et al.: Hybrid task cascade for instance segmentation, pp. 4974–4983 (2019)

  • Dargan, S., Kumar, M., Ayyagari, M.R., Kumar, G.: A survey of deep learning and its applications: a new paradigm to machine learning. Arch. Comput. Methods Eng. 27(4), 1071–1092 (2020). https://doi.org/10.1007/s11831-019-09344-w

    Article  MathSciNet  Google Scholar 

  • de Assis Neto, S.R., et al.: Detecting human activities based on a multimodal sensor data set using a bidirectional long short-term memory model: a case study. Stud. Syst. Decision Control 273, 31–51 (2020)

    Article  Google Scholar 

  • De Deijn, J.: Automatic car damage recognition using convolutional neural networks. MSc thesis, p 56 (2018)

  • Dey, S., Huang, K.W., Beerel, P.A., Chugg, K.M.: Pre-defined sparse neural networks with hardware acceleration. arXiv, May (2018)

  • Dharmagunawardhana, C.: Texture based image recognition using deep neural, November 2016 (2017)

  • Doğru, A., Bouarfa, S., Arizar, R., Aydoğan, R.: Using convolutional neural networks to automate aircraft maintenance visual inspection. Aerospace 7(12), 1–22 (2020). https://doi.org/10.3390/aerospace7120171

    Article  Google Scholar 

  • Döring, K.R., Eichhorn, A., Girimonte, D.: Improving surface defect detection for quality assessment of car body panels. Mathw. Soft Comput. 11, 163–177 (2004)

    Google Scholar 

  • Dubey, S.R.: Local directional relation pattern for unconstrained and robust face retrieval. Multimed. Tools Appl. 78(19), 28063–28088 (2019). https://doi.org/10.1007/s11042-019-07908-3

    Article  Google Scholar 

  • González, E., Bianconi, F., Álvarez, M.X., Saetta, S.A.: Automatic characterization of the visual appearance of industrial materials through colour and texture analysis: An overview of methods and applications. Adv. Opt. Technol. 2013, 503541 (2013). https://doi.org/10.1155/2013/503541

    Article  Google Scholar 

  • Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806–4813 (2020). https://doi.org/10.1109/ACCESS.2019.2962617

    Article  Google Scholar 

  • Hojatimalekshah, A., et al.: Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning. Cryosphere 15(5), 2187–2209 (2021). https://doi.org/10.5194/TC-15-2187-2021

    Article  Google Scholar 

  • Isra, A.R.: Number plate detection of vehicle using modified kirsch compass kernel edge detection. Int. J. Eng. Manage. Res. 7(1), 184–188 (2017)

    Google Scholar 

  • Jayawardena, S.: Image Based Automatic Vehicle Damage Detection. November (2013)

  • Jayawardena, S., Hutter, M., Brewer, N.: Featureless 2D-3D pose estimation by minimising an illumination-invariant loss. In: Int. Conf. Image Vis. Comput. New Zeal., pp. 1–18 (2010). https://doi.org/10.1109/IVCNZ.2010.6148854

  • Karimi, N., Ranjbarzadeh Kondrood, R., Alizadeh, T.: An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms. Meas. J. Int. Meas. Confed. 107, 68–76 (2017). https://doi.org/10.1016/j.measurement.2017.05.009

    Article  Google Scholar 

  • Kas, M., El-merabet, Y., Ruichek, Y., Messoussi, R.: A comprehensive comparative study of handcrafted methods for face recognition LBP-like and non LBP operators. Multimed. Tools Appl. 79(1–2), 375–413 (2020). https://doi.org/10.1007/s11042-019-08049-3

    Article  Google Scholar 

  • Kumar, T., Park, J., Ali, M.S., Shahab Uddin, A.F.M., Ko, J.H., Bae, S.-H.: Binary-classifiers-enabled filters for semi-supervised learning. IEEE Access 9, 167663–167673 (2021). https://doi.org/10.1109/ACCESS.2021.3124200

    Article  Google Scholar 

  • Kyu, P.M., Woraratpanya, K.: Car damage detection and classification. In: ACM Int. Conf. Proceeding Ser., July (2020). https://doi.org/10.1145/3406601.3406651

  • Li, P., Shen, B. Y., Dong, W.: An anti-fraud system for car insurance claim based on visual evidence. arXiv (2018)

  • Lindahl, T.: Study of local binary patterns. Sci. Technol. p. 3 (2007)

  • Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation, pp. 8759–8768 (2018)

  • Malik, H.S., Dwivedi, M., Omakar, S.N., Samal, S.R., Rathi, A., Monis, E.B.: Preprint deep learning based car damage classification and detection. EasyChair (2020)

  • Manjunath, B.S., Haley, G.M., Ma, W.Y., Newsam, S.D.: Multiband techniques for texture classification and segmentation. In: Bovik, A. (ed.) Handbook Image Video Processing, pp. 455–470. Academic Press, US (2005)

    Chapter  Google Scholar 

  • Manjunatha, S.B., Guruprasad, A.M., Vineesh, P.: Face analysis by local directional number pattern. Int. J. Eng. Res. Gen. Sci. 3(1), 1400–1410 (2015)

    Google Scholar 

  • Michael Revina, I., Sam Emmanuel, W.R.: Face expression recognition using LDN and dominant gradient local ternary pattern descriptors. J. King Saud Univ. Comput. Inf. Sci. (2018). https://doi.org/10.1016/j.jksuci.2018.03.015

    Article  Google Scholar 

  • Nguyen, G., et al.: Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif. Intell. Rev. 52(1), 77–124 (2019). https://doi.org/10.1007/s10462-018-09679-z

    Article  Google Scholar 

  • Patil, A.: Car damage recognition using the expectation maximization algorithm and mask R-CNN. Smart Innov. Syst. Technol. 196, 607–616 (2020). https://doi.org/10.1007/978-981-15-7062-9_61

    Article  Google Scholar 

  • Patil, K., Kulkarni, M., Sriraman, A., Karande, S.: Deep learning based car damage classification. In: Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2017, vol. 2017–Decem, May 2018, pp. 50–54 (2017). https://doi.org/10.1109/ICMLA.2017.0-179.

  • Pourasad, Y., Ranjbarzadeh, R., Mardani, A.: A new algorithm for digital image encryption based on chaos theory. Entropy 23(3), 341 (2021). https://doi.org/10.3390/e23030341

    Article  MathSciNet  Google Scholar 

  • Qian, Z., Hayes, T. L., Kafle, K., Kanan, C.: Do we need fully connected output layers in convolutional networks? arXiv (2020)

  • Rakshata, P.: Car damage detection and analysis using deep learning algorithm for automotive. Int. J. Sci. Res. Eng. Trends 5(6), 1896–1898 (2019)

    Google Scholar 

  • Ramachandran, P., Zoph, B., Le, Q. V.: Searching for activation functions. arXiv, pp. 1–13 (2017)

  • Ranjbarzadeh, R., Baseri Saadi S.: Corrigendum to ‘Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering’ (Measurement (2020a) 150, (S0263224119309522), (https://doi.org/10.1016/j.measurement.2019.107086)). Meas. J. Int. Meas. Confed., 151 (2020a). https://doi.org/10.1016/j.measurement.2019.107230

  • Ranjbarzadeh, R., Saadi, S.B.: Automated liver and tumor segmentation based on concave and convex points using fuzzy c-means and mean shift clustering. Meas. J. Int. Meas. Confed. (2020b). https://doi.org/10.1016/j.measurement.2019.107086

    Article  Google Scholar 

  • Ranjbarzadeh, R., Saadi, S.B., Amirabadi, A.: LNPSS: SAR image despeckling based on local and non-local features using patch shape selection and edges linking. Meas. J. Int. Meas. Confed. 164, 1079789 (2020). https://doi.org/10.1016/j.measurement.2020.107989

    Article  Google Scholar 

  • Ranjbarzadeh, R., et al.: Lung infection segmentation for COVID-19 pneumonia based on a cascade convolutional network from CT images. Biomed Res. Int. 2021, 1–16 (2021a). https://doi.org/10.1155/2021/5544742

    Article  Google Scholar 

  • Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., Anari, S., Naseri, M., Bendechache, M.: Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci. Rep. 11(1), 10930 (2021b). https://doi.org/10.1038/s41598-021-90428-8

    Article  Google Scholar 

  • Soliman, G.M.A., Abou-El-Enien T.H.M.: Terrorism prediction using artificial neural network. Revue d'Intelligence Artificielle. 2019, vol. 33, no. 2, pp. 81–87. https://doi.org/10.18280/ria.330201

  • Shi, W., Gong, Y., Wang, J.: Improving CNN performance with min-max objective. IJCAI Int. Jt. Conf. Artif. Intell. 2016, 2004–2010 (2016)

    Google Scholar 

  • SnowEx20 Boise State University Terrestrial Laser Scanner (TLS) Point Cloud, Version 1. National Snow and Ice Data Center

  • Song, K.-C., Yan, Y.-H., Chen, W.-H., Zhang, X.: Research and perspective on local binary pattern. Acta Autom. Sin. 39(6), 730–744 (2013). https://doi.org/10.1016/s1874-1029(13)60051-8

    Article  Google Scholar 

  • Torino, P. D. I.: Detecting Interference and Classification in Global Navigation Satellite Systems Supervisor, April (2021)

  • Valizadeh, A., Jafarzadeh Ghoushchi, S., Ranjbarzadeh, R., Pourasad, Y.: Presentation of a segmentation method for a diabetic retinopathy patient’s fundus region detection using a convolutional neural network. Comput. Intell. Neurosci. 2021, 1–14 (2021). https://doi.org/10.1155/2021/7714351

    Article  Google Scholar 

  • Xu, C., et al.: Fast Vehicle and pedestrian detection using improved mask R-CNN. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/5761414

    Article  Google Scholar 

  • Yaseen, A.F.: A survey on the layers of convolutional neural networks. Int. J. Comput. Sci. Mob. Comput. 7(12), 191–196 (2018)

    Google Scholar 

  • Zhang, X., Xv, C., Shen, M., He, X., Du, W.: Survey of convolutional neural network. NCCE 147, 93–97 (2018). https://doi.org/10.2991/ncce-18.2018.16

    Article  Google Scholar 

  • Zhang, Q., Chang, X., Bian, S.B.: Vehicle-damage-detection segmentation algorithm based on improved mask RCNN. IEEE Access 8, 6997–7004 (2020). https://doi.org/10.1109/ACCESS.2020.2964055

    Article  Google Scholar 

  • Zimmermann, R.S., Siems, J.N.: Faster training of mask R-CNN by focusing on instance boundaries. Comput. Vis. Image Underst. 188, 1–11 (2019). https://doi.org/10.1016/j.cviu.2019.102795

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The specific contributions made by each author is as follows: MP: Conceptualization, Methodology, Implementation, Writing-Original Draft, Writing—Review & Editing. MA: Conceptualization, Methodology, Implementation, Writing-Original Draft, Writing—Review & Editing.

Corresponding author

Correspondence to Majid Amirfakhrian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Financial interests

The authors declare they have no financial interests.

Non-financial interests

The authors declare they have no financial interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhizkar, M., Amirfakhrian, M. Car detection and damage segmentation in the real scene using a deep learning approach. Int J Intell Robot Appl 6, 231–245 (2022). https://doi.org/10.1007/s41315-022-00231-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-022-00231-5

Keywords

Navigation