Skip to main content
Log in

LEDet: localization estimation detector with data augmentation for ship detection based on unmanned surface vehicle

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Ship detection is significant for monitoring ports, especially contributing to the safe driving of Unmanned Surface Vehicle (USV). However, recent ship detection based on deep learning lacks complete ship datasets and uses the classification score as the ranking basis, which harms their performance. To address the problems, we present a one-stage localization estimation detector (LEDet) with ship-customized data augmentation. Specifically, we integrate the localization quality estimation into the classification branch as a soft label localization score. We further apply ship-customized data augmentation named “cutting-transform-paste” to expand ship datasets without manual annotation. Hence, a large number of diverse ship datasets can be created. Extensive experiments show that our LEDet consistently exceeds the strong baseline by 8.0% COCO-style Average Precision (AP) with ResNet-50. It significantly improves the ship detection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M.: Yolov4: Optimal speed and accuracy of object detection. Comput. Sci. (2020). arXiv preprint arXiv:2004.10934

  • Chen, L., Fukun, B., et al.: An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett. 14(4), 529–533 (2017). https://doi.org/10.1109/lgrs.2017.2654450

    Article  Google Scholar 

  • Chen, K., Wang, J., Pang, J., et al.: MMDetection: Open mmlab detection toolbox and benchmark. Comput. Sci. (2019). arXiv preprint arXiv:1906.07155

  • Chen, Y., Li, Y., Kong, T., et al.: Scale-aware automatic augmentation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9563–9572 (2021a)

  • Chen, Z., Ouyang, W., Liu, T., et al.: A shape transformation-based dataset augmentation framework for pedestrian detection. Int. J. Comput. vis. 129(4), 1121–1138 (2021b)

    Article  Google Scholar 

  • Cubuk, E.D., et al.: Auto augment: Learning augmentation strategies from data. IEEE/CVF Conf. Comput. vis. Pattern Recognit. (CVPR) (2019). https://doi.org/10.1109/cvpr.2019.00020

    Article  Google Scholar 

  • Cubuk, E.D., Zoph, B., Shlens, J., et al.: Randaugment: Practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

  • Duan, K., Bai, S., Xie, L., et al.: Centernet: Keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

  • Fefilatyev, S., Goldgof, D., Shreve, M., et al.: Detection and tracking of ships in open sea with rapidly moving buoy-mounted camera system. Ocean Eng. 54, 1–12 (2012). https://doi.org/10.1016/j.oceaneng.2012.06.028

    Article  Google Scholar 

  • Fingas, M.F., Brown, C.E.: Review of ship detection from airborne platforms. Can. J. Remote. Sens. (2014). https://doi.org/10.1080/07038992.2001.10854880

    Article  Google Scholar 

  • Girshick, R.: Fast R-CNN. Comput. Sci. (2015). https://doi.org/10.1109/iccv.2015.169

    Article  Google Scholar 

  • Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Comput. Soc. (2013). https://doi.org/10.1109/cvpr.2014.81

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. IEEE Conf. Comput. vis. Pattern Recognit. (CVPR) (2016). https://doi.org/10.1109/cvpr.2016.90

    Article  Google Scholar 

  • He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. IEEE (2017). https://doi.org/10.1109/iccv.2017.322

    Article  Google Scholar 

  • He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. IEEE/CVF Conf. Comput. vis. Pattern Recognit. (CVPR) 2020, 9726–9735 (2020). https://doi.org/10.1109/CVPR42600.2020.00975

    Article  Google Scholar 

  • Jia, D., Wei, D., Socher, R., et al.: ImageNet: A large-scale hierarchical image database. Proc. of IEEE Comput. vis. Pattern Recognit. (2009). https://doi.org/10.1109/cvprw.2009.5206848

    Article  Google Scholar 

  • Jiang, B., Luo, R., Mao, J., et al.: Acquisition of localization confidence for accurate object detection. In: Proceedings of the European conference on computer vision (ECCV), pp. 784–799. Springer, Cham (2018)

    Google Scholar 

  • Kong, T., Sun, F., Liu, H., et al.: Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  • Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

  • Lecun, Y., Bottou, L.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  • Li, X., Wang, W., Wu, L., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Adv. Neural. Inf. Process. Syst. 33, 21002–21012 (2020)

    Google Scholar 

  • Lin, T.Y., Maire, M., Belongie, S., et al.: Microsoft COCO: common objects in context. In: European conference on computer vision. Springer International Publishing, Berlin (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  • Lin, T.Y., Dollar, P., Girshick, R., et al.: Feature pyramid networks for object detection. IEEE Conf. Comput. vis. Pattern Recognit. (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.106

    Article  Google Scholar 

  • Neubeck, A., Gool, L.: Efficient non-maximum suppression. Int. Conf. Pattern Recognit. (2006). https://doi.org/10.1109/icpr.2006.479

    Article  Google Scholar 

  • Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. IEEE (2017). https://doi.org/10.1109/cvpr.2017.690

    Article  Google Scholar 

  • Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. comput. Sci. (2018). arXiv preprint arXiv:1804.02767

  • Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/tpami.2016.2577031

    Article  Google Scholar 

  • Rezatofighi, H., Tsoi, N., Gwak, J.Y., et al.: Generalized intersection over union: a metric and a loss for bounding box regression. IEEE/CVF Conf. Comput. vis. Pattern Recognit. (CVPR) (2019). https://doi.org/10.1109/cvpr.2019.00075

    Article  Google Scholar 

  • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. comput. Sci. (2014). arXiv preprint arXiv:1409.1556

  • Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

  • Tang, Y., Li, B., Liu, M., et al.: Autopedestrian: an automatic data augmentation and loss function search scheme for pedestrian detection. IEEE Trans. Image Process. 30, 8483–8496 (2021)

    Article  MathSciNet  Google Scholar 

  • Tian, Z., Shen, C., Chen, H., et al.: FCOS: Fully convolutional one-stage object detection. IEEE/CVF Int. Conf. Comput. vis. (ICCV) (2019). https://doi.org/10.1109/iccv.2019.00972

    Article  Google Scholar 

  • Wu, S., Li, X., Wang, X.: IoU-aware single-stage object detector for accurate localization. Image vis. Comput. 97, 103911 (2020)

    Article  Google Scholar 

  • Wu, S., Yang, J., Wang, X., et al.: Iou-balanced loss functions for single-stage object detection. Pattern Recognit. Lett. 156, 96–103 (2022)

    Article  Google Scholar 

  • Zhang, Y., Li, Q.Z., Zang, F.N.: Ship detection for visual maritime surveillance from non-stationary platforms. Ocean Eng. 141, 53–63 (2017)

    Article  Google Scholar 

  • Zhi, Z., Ji, K., Xing, X., et al.: Ship surveillance by integration of space-borne SAR and AIS–review of current research. J. Navig. 67(1), 177–189 (2014). https://doi.org/10.1017/s0373463313000659

    Article  Google Scholar 

  • Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 850–859 (2019)

  • Zhu, C., Chen, F., Shen, Z., et al.: Soft anchor-point object detection. In: European conference on computer vision, pp. 91–107. Springer, Cham (2020)

    Google Scholar 

  • Zoph, B., Cubuk, E.D., Ghiasi, G., et al.: Learning data augmentation strategies for object detection. In: European conference on computer vision, pp. 566–583. Springer, Cham (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFC1521700), Major projects of National Natural Science Foundation of China: 61991415; The Joint Founds of National Natural Science Foundation of China): U1813217; the National Natural Science Foundation of China (No. 51904181). Shanghai Municipal Natural Science Foundation (21ZR1423300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyi Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Lv, J., Wang, Y. et al. LEDet: localization estimation detector with data augmentation for ship detection based on unmanned surface vehicle. Int J Intell Robot Appl 6, 216–230 (2022). https://doi.org/10.1007/s41315-022-00238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-022-00238-y

Keywords

Navigation