Skip to main content

Advertisement

Log in

Constraint-free discretized manifold-based path planner

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Autonomous robotic path planning in partially known environments, such as warehouse robotics, deals with static and dynamic constraints. Static constraints include stationary obstacles, robotic and environmental limitations. Dynamic constraints include humans, robots and dis/appearance of anticipated dangers, such as spills. Path planning consists of two steps: First, a path between the source and target is generated. Second, path segments are evaluated for constraint violation. Sampling algorithms trade memory for maximal map representation. Optimization algorithms stagnate at non-optimal solutions. Alternatively, detailed grid-maps view terrain/structure as expensive memory costs. The open problem is thus to represent only constraint-free, navigable regions and generating anticipatory/reactive paths to combat new constraints. To solve this problem, a Constraint-Free Discretized Manifolds-based Path Planner (CFDMPP) is proposed in this paper. The algorithm’s first step focuses on maximizing map knowledge using manifolds. The second uses homology and homotopy classes to compute paths. The former constructs a representation of the navigable space as a manifold, which is free of apriori known constraints. Paths on this manifold are constraint-free and do not have to be explicitly evaluated for constraint violation. The latter handles new constraint knowledge that invalidate the original path. Using homology and homotopy, path classes can be recognized and avoided by tuning a design parameter, resulting in an alternative constraint-free path. Path classes on the discretized constraint-free manifold characterize numerical uniqueness of paths around constraints. This designation is what allows path class characterization, avoidance, and querying of a new path class (multiple classes with tuning), even when constraints are simply anticipatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable

Notes

  1. https://investor.costco.com/corporate-profile-2.

  2. https://github.com/petercorke/robotics-toolbox-matlab.

Abbreviations

CFDM:

Constraint-free discretized manifold

CFDMPP:

Constraint-free discretized manifolds-based path planner

CFM:

Constraint-free manifold

CS:

Constraint set

DC:

Dynamic constraint

DCS:

Disjoint constraint set

EA:

Evolutionary algorithm

EF:

Evaluative factor

HBM:

Homotopy based method

ICE:

Inner constraint edge

IFTM:

Inverse function theorem for manifolds

MBM:

Model based methods

MPC:

Model predictive control

NF:

Navigation function

OA:

Optimization algorithm

OCE:

Outer constraint edge

PPM:

Path planning manifold

PPP:

Path planning problem

PPS:

Path planning space

PPPS:

Primary path planning space

PRM:

Probabilistic road map

PSM:

Product smooth manifold

RRT:

Rapidly exploring random tree

SA:

Sampling algorithm

SC:

Static constraint

SM:

Smooth manifold

SPPS:

Secondary path planning space

TM:

Topological manifold

UGV:

Unmanned ground vehicle

\(\mathcal {C}\) :

Configuration space

\(\mathcal{C}\mathcal{O}\) :

Convex obstacle region in configuration space

\({CS}_{r}\) :

Constraint set r

\({DCS}_{r}\) :

Disjoint constraint set r

DCSs :

Set of all disjoint constraint sets of all path planning spaces

\({DCSs}^{(\cdot )}\) :

Set of all disjoint constraint sets of space \((\cdot )\)

\(n_{ML}\) :

Number of SCs classified as mechanical limits (ML)

\(n_{NG}\) :

Number of SCs classified as no-go zones (NG)

\(n_{{OB}}\) :

Number of SCs classified as obstacles (OB)

\(n_{SG}\) :

Number of SCs classified as singularities (SG)

\(n_{{SC}}\) :

Total number of SCs

\({{\textbf {node}}}^{start}\) :

Starting point in CFDM

\({{\textbf {curr}}}\) :

Current node in CFDM

\({{\textbf {nbr}}}\) :

Neighbour node in CFDM

\({\mathcal {P}}\) :

Path planning space

\({\mathcal {P}}^{{mechanical\, limits}}\) :

\(\subseteq \mathcal {P}\) Space corresponding to the mechanical limits of the robot (e.g., joint limits)

\({\mathcal {P}}^{{no-go\, zones}}\) :

\(\subseteq \mathcal {P}\) Space corresponding to the no-go zones

\({\mathcal {P}}^{{obstacles}}\) :

\(\subseteq \mathcal {P}\) Space corresponding to the obstacles

\({\mathcal {P}}^{{singularities}}\) :

\(\subseteq \mathcal {P}\) Space corresponding to the singularities of the robot

\({\mathcal {P}}^{{constraint}}\) :

\(\equiv \mathcal {P}^{{mechanical\, limits}} \cup \mathcal {P}^{{no-go-zones}} \cup \mathcal {P}^{{obstacles}} \cup \mathcal {P}^{{singularities}}\) Space corresponding to all constraints

\(\mathcal {P}^{{free}}\) :

\(\equiv \mathcal {P} \setminus \mathcal {P}^{\text {constraint}}\) Constraint-free Space

\({{\textbf {p}}}\) :

\(\in \mathcal {P}\) A point in \(\mathcal {P}\)

\({{\textbf {p}}}^{{start}}\) :

\(\in \mathcal {P}\) Starting point in \(\mathcal {P}\)

\({{\textbf {p}}}^{{goal}}\) :

\(\in \mathcal {P}\) Destination point in \(\mathcal {P}\)

\({{\textbf {p}}}_{{path}}\) :

\(\in \mathcal {P}\) Path connecting \({\textbf {p}}^{\text {start}}\) to \({\textbf {p}}^{\text {goal}}\) in \(\mathcal {P}\)

\({\mathcal {S}}_{{surface}}\) :

A Surface

\({SC}_{k}\) :

Static constraint k

\({{\textbf {T}}}_p\mathcal {S}\) :

Tangent Space at a point p on a surface

\({\mathcal{T}\mathcal{S}}\) :

Topological space of set \(\mathcal {S}\) and topology \(\mathcal {T}\)

\(\mathcal {W}\) :

Workspace

\(\Delta _{{CS}}\) :

Global proximity threshold between constraints

\(\Delta ^{ij}_{{CS}}\) :

Measured proximity between constraints i and j

\(\delta\) :

Boundary. For instance, \(\delta x\) denotes the boundary of x

References

  • Abbas, M.A., Milman, R., Eklund, J.M.: Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles. In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6 (2014). https://doi.org/10.1109/CCECE.2014.6901109

  • Ademovic, A., Lacevic, B.: Path planning for robotic manipulators using expanded bubbles of free c-space. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), vol. 2016-, pp. 77–82 (2016). https://doi.org/10.1109/ICRA.2016.7487118

  • Aghababa, M.P.: 3D Path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Appl. Ocean Res. 38, 48–62 (2012)

    Google Scholar 

  • Agirrebeitia, J., Avilés, R., de Bustos, I.F., Ajuria, G.: A new APF strategy for path planning in environments with obstacles. Mech. Mach. Theory 40(6), 645–658 (2005)

    MathSciNet  MATH  Google Scholar 

  • Akbaripour, H., Akbaripour, H., Masehian, E., Masehian, E.: Semi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robots. Int. J. Adv. Manuf. Technol. 89(5), 1401–1430 (2017)

    MATH  Google Scholar 

  • Alonso-Mora, J., DeCastro, J.A., Raman, V., Rus, D., Kress-Gazit, H.: Reactive mission and motion planning with deadlock resolution avoiding dynamic obstacles. Auton. Robot. 42(4), 801–824 (2018)

    Google Scholar 

  • Ataka, A., Lam, H.-K., Althoefer, K.: Reactive magnetic-field-inspired navigation method for robots in unknown convex 3-D environments. IEEE Robotics and Automation Letters 3(4), 3583–3590 (2018)

    Google Scholar 

  • Atramentov, A., LaValle, S.M.: Efficient nearest neighbor searching for motion planning. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), vol. 1, pp. 632–6371 (2002). https://doi.org/10.1109/ROBOT.2002.1013429

  • Barraquand, J., Latombe, J.-C.: Robot motion planning: A distributed representation approach. The International Journal of Robotics Research 10(6), 628–649 (2016)

    Google Scholar 

  • Belkhouche, F.: Reactive path planning in a dynamic environment. IEEE Trans. Rob. 25(4), 902–911 (2009)

    Google Scholar 

  • Belkhouche, F., Bendjilali, B.: Reactive path planning for 3-D autonomous vehicles. IEEE Trans. Control Syst. Technol. 20(1), 249–256 (2012)

    Google Scholar 

  • Berenson, D., Srinivasa, S., Kuffner, J.: Task space regions: A framework for pose-constrained manipulation planning. The International Journal of Robotics Research 30(12), 1435–1460 (2011)

    Google Scholar 

  • Bevilacqua, P., Frego, M., Fontanelli, D., Palopoli, L.: Reactive planning for assistive robots. IEEE Robotics and Automation Letters 3(2), 1276–1283 (2018)

    Google Scholar 

  • Bhattacharya, S., Kumar, V., Likhachev, M.: Search-based path planning with homotopy class constraints. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10, pp. 1230–1237 (2010)

  • Bhattacharya, S., Likhachev, M., Kumar, V.: Identification and representation of homotopy classes of trajectories for search-based path planning in 3D. In: Durrant-Whyte, H., Roy, N., Abbeel, P. (eds.) Robotics: Science and Systems VII. The MIT Press, One Broadway 12th Floor Cambridge, MA 02142 (2012). https://doi.org/10.7551/mitpress/9481.003.0007

  • Bhattacharya, S., Likhachev, M., Kumar, V.: Search-based path planning with homotopy class constraints in 3d. In: Invited Paper for Sub-area Spotlights Track on ’Best-paper Talks’, Proceedings of Twenty-Sixth Conference on Artificial Intelligence (AAAI-12) (2012)

  • Bhattacharya, S.: Towards optimal path computation in a simplicial complex. The International Journal of Robotics Research 38(8), 981–1009 (2019)

    Google Scholar 

  • Bhattacharya, S., Pivtoraiko, M.: A classification of configuration spaces of planar robot arms for a continuous inverse kinematics problem. Acta Appl. Math. 139(1), 133–166 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bhattacharya, S., Likhachev, M., Kumar, V.: Topological constraints in search-based robot path planning. Auton. Robot. 33(3), 273–290 (2012)

    Google Scholar 

  • Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration on riemannian manifolds with boundaries. The International Journal of Robotics Research 33(1), 113–137 (2014)

    Google Scholar 

  • Błaszczyk, Z., Carrasquel-Vera, J.G.: Topological complexity and efficiency of motion planning algorithms. Revista Matemática Iberoamericana 34(4), 1679–1684 (2018)

    MathSciNet  MATH  Google Scholar 

  • Bloch, A., Camarinha, M., Colombo, L.J.: Dynamic interpolation for obstacle avoidance on riemannian manifolds. Int. J. Control 94(3), 588–600 (2021)

    MathSciNet  MATH  Google Scholar 

  • Bohigas, O., Henderson, M.E., Ros, L., Porta, J.M.: A singularity-free path planner for closed-chain manipulators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2128–2134 (2012). https://doi.org/10.1109/ICRA.2012.6224899

  • Bohigas, O., Henderson, M.E., Ros, L., Manubens, M., Porta, J.M.: Planning singularity-free paths on closed-chain manipulators. IEEE Trans. Rob. 29(4), 888–898 (2013). https://doi.org/10.1109/TRO.2013.2260679

    Article  Google Scholar 

  • Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 521–5281 (2000). https://doi.org/10.1109/ROBOT.2000.844107

  • Brooks, R.A.: Planning collision- free motions for pick-and-place operations. The International Journal of Robotics Research 2(4), 19–44 (1983)

    Google Scholar 

  • Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Testing homotopy for paths in the plane. Discrete & Computational Geometry 31(1), 61–81 (2004)

    MathSciNet  MATH  Google Scholar 

  • Campana, M., Lamiraux, F., Laumond, J.-P.: A gradient-based path optimization method for motion planning. Adv. Robot. 30(17–18), 1126–1144 (2016)

    Google Scholar 

  • Carpin, S., Pillonetto, G.: Motion planning using adaptive random walks. IEEE Trans. Rob. 21(1), 129–136 (2005)

    Google Scholar 

  • Chu, K., Lee, M., Sunwoo, M.: Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Transp. Syst. 13(4), 1599–1616 (2012)

    Google Scholar 

  • Cockayne, E.J., Hall, G.W.C.: Plane motion of a particle subject to curvature constraints. SIAM Journal on Control 13(1), 197–220 (1975)

    MathSciNet  MATH  Google Scholar 

  • Cui, P., Yan, W., Wang, Y.: Reactive path planning approach for docking robots in unknown environment. J. Adv. Transp. 2017, 1–11 (2017)

    Google Scholar 

  • Dale, L.K., Amato, N.M.: Probabilistic roadmaps-putting it all together. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1940–19472 (2001). https://doi.org/10.1109/ROBOT.2001.932892

  • Dash, A.K., Chen, I.-M., Yeo, S.H., Yang, G.: Singularity-free path planning of parallel manipulators using clustering algorithm and line geometry. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 761–766 (2003)

  • De Filippis, L., Guglieri, G., Quagliotti, F.: Path planning strategies for UAVs in 3D environments. Journal of Intelligent & Robotic Systems 65(1), 247–264 (2012)

    Google Scholar 

  • Diankov, R., Kuffner, J.: Randomized statistical path planning. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–6 (2007). https://doi.org/10.1109/IROS.2007.4399557

  • Diaz-Arango, G., Sarmiento-Reyes, A., Hernandez-Martinez, L., Vazquez-Leal, H., Lopez-Hernandez, D.D., Marin-Hernandez, A.: Path optimization for terrestrial robots using homotopy path planning method. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2824–2827 (2015)

  • Diaz-Arango, G., Vazquez-Leal, H., Hernandez-Martinez, L., Manuel Jimenez-Fernandez, V., Heredia-Jimenez, A., Ambrosio, R.C., Huerta-Chua, J., De Cos-Cholula, H., Hernandez-Mendez, S.: Multiple-target homotopic quasi-complete path planning method for mobile robot using a piecewise linear approach. Sensors (Basel, Switzerland) 20(11), 3265 (2020)

    Google Scholar 

  • Diéguez, A.R., Sanz, R., López, J.: Deliberative on-line local path planning for autonomous mobile robots. Journal of Intelligent & Robotic Systems 37(1), 1–19 (2003)

    Google Scholar 

  • Donald, B., Lynch, K.K.M.., Rus, D. (eds.): Algorithmic and Computational Robotics : New Directions 2000 WAFR, 1st edn. A K Peters/CRC Press, an imprint of Taylor and Francis, Boca Raton, FL (2001)

  • Dorst, L., Mandhyan, I., Trovato, K.: The geometrical representation of path planning problems. Robot. Auton. Syst. 7(2), 181–195 (1991)

    Google Scholar 

  • Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurišica, L.: Path planning with modified a star algorithm for a mobile robot. Procedia Engineering 96, 59–69 (2014)

    Google Scholar 

  • Eduardo De Cos-Cholula, H., Ulises Diaz-Arango, G., Hernandez-Martinez, L., Vazquez-Leal, H., Sarmiento-Reyes, A., Teresa Sanz-Pascual, M., Leobardo Herrera-May, A., Castaneda-Sheissa, R.: FPGA implementation of homotopic path planning method with automatic assignment of repulsion parameter. Energies (Basel) 13(10), 2623 (2020)

    Google Scholar 

  • Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: A review. IEEE Access 2, 56–77 (2014). https://doi.org/10.1109/ACCESS.2014.2302442

    Article  Google Scholar 

  • Farber, M.: Topological complexity of motion planning. Discrete & Computational Geometry 29(2), 211–221 (2003)

    MathSciNet  MATH  Google Scholar 

  • Faverjon, B., Tournassoud, P.: A local based approach for path planning of manipulators with a high number of degrees of freedom. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1152–1159 (1987). https://doi.org/10.1109/ROBOT.1987.1087982

  • Ferguson, D., Stentz, A.: Anytime RRTs. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5369–5375 (2006). https://doi.org/10.1109/IROS.2006.282100

  • Gao, Y., Lin, T., Borrelli, F., Tseng, E., Hrovat, D.: Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance on Slippery Roads. Dynamic Systems and Control Conference, vol. ASME 2010 Dynamic Systems and Control Conference, Volume 1, pp. 265–272 (2010). https://doi.org/10.1115/DSCC2010-4263. ASME

  • Gao, Y., Gray, A., Tseng, H.E., Borrelli, F.: A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles. Veh. Syst. Dyn. 52(6), 802–823 (2014). https://doi.org/10.1080/00423114.2014.902537

    Article  Google Scholar 

  • Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., Fiorini, P.: Dynamic movement primitives: Volumetric obstacle avoidance using dynamic potential functions. Journal of Intelligent & Robotic Systems 101(4) (2021)

  • Gregoire, J., Čáp, M., Frazzoli, E.: Locally-optimal multi-robot navigation under delaying disturbances using homotopy constraints. Auton. Robot. 42(4), 895–907 (2018)

    Google Scholar 

  • Havoutis, I., Ramamoorthy, S.: Motion planning and reactive control on learnt skill manifolds. The International Journal of Robotics Research 32(9–10), 1120–1150 (2013)

    Google Scholar 

  • Henderson, M.E.: Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 12(3), 451–476 (2002)

    MathSciNet  MATH  Google Scholar 

  • Hernández, E., Carreras, M., Ridao, P.: A bug-based path planner guided with homotopy classes. ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics 2, 123–131 (2012)

  • Hernández, E., Carreras, M., Ridao, P.: A path planning algorithm for an AUV guided with homotopy classes. In: Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling, vol. 21 (2011)

  • Hernandez, E., Carreras, M., Ridao, P.: A comparison of homotopic path planning algorithms for robotic applications. Robot. Auton. Syst. 64, 44–58 (2015)

    Google Scholar 

  • Hildebrandt, A.-C., Klischat, M., Wahrmann, D., Wittmann, R., Sygulla, F., Seiwald, P., Rixen, D., Buschmann, T.: Real-time path planning in unknown environments for bipedal robots. IEEE Robotics and Automation Letters 2(4), 1856–1863 (2017)

    Google Scholar 

  • Hossain, M.A., Ferdous, I.: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Robot. Auton. Syst. 64, 137–141 (2015)

    Google Scholar 

  • Hsu, D., Sun, Zheng: Adaptively combining multiple sampling strategies for probabilistic roadmap planning. In: IEEE Conference on Robotics, Automation and Mechatronics, 2004., vol. 2, pp. 774–7792 (2004). https://doi.org/10.1109/RAMECH.2004.1438016

  • Hughes, K., Tokuta, A., Ranganathan, N.: Trulla : An algorithm for path planning among weighted regions by localized propagations. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 1, 469–476 (1992). https://doi.org/10.1109/IROS.1992.587377

    Article  Google Scholar 

  • Jaillet, L., Porta, J.: Asymptotically-optimal path planning on manifolds. Robotics Science and Systems VIII (2012)

  • Jaillet, L., Porta, J.M.: Path planning under kinematic constraints by rapidly exploring manifolds. IEEE Trans. Rob. 29(1), 105–117 (2013). https://doi.org/10.1109/TRO.2012.2222272

    Article  Google Scholar 

  • Jaillet, L., Simeon, T.: Path deformation roadmaps: Compact graphs with useful cycles for motion planning. The International Journal of Robotics Research 27(11–12), 1175–1188 (2008). https://doi.org/10.1177/0278364908098411

    Article  Google Scholar 

  • Jaillet, L., Cortés, J., Siméon, T.: Sampling-based path planning on configuration-space costmaps. IEEE Trans. Rob. 26(4), 635–646 (2010)

    Google Scholar 

  • Jenkins, K.D.: The shortest path problem in the plane with obstacles: A graph modeling approach to producing finite search lists of homotopy classes. Master’s thesis, Naval Postgraduate School Monterey California (June 1991)

  • Kala, R.: Homotopy conscious roadmap construction by fast sampling of narrow corridors. Applied Intelligence (Dordrecht, Netherlands) 45(4), 1089–1102 (2016)

    Google Scholar 

  • Kala, R.: Homotopic roadmap generation for robot motion planning. Journal of Intelligent & Robotic Systems 82(3), 555–575 (2016)

    MathSciNet  Google Scholar 

  • Kang, G., Kim, Y.B., Lee, Y.H., Oh, H.S., You, W.S., Choi, H.R.: Sampling-based motion planning of manipulator with goal-oriented sampling. Intel. Serv. Robot. 12(3), 265–273 (2019)

    Google Scholar 

  • Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research 30(7), 846–894 (2011)

    MATH  Google Scholar 

  • Kattepur, A., Purushotaman, B.: Roboplanner: a pragmatic task planning framework for autonomous robots. Cognitive Computation and Systems 2(1), 12–22 (2020)

    Google Scholar 

  • Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-.: Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation 14(1), 166–171 (1998). https://doi.org/10.1109/70.660866

  • Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  • Kennedy, M., Thakur, D., Ani Hsieh, M., Bhattacharya, S., Kumar, V.: Optimal paths for polygonal robots in SE(2). Journal of Mechanisms and Robotics 10(2) (2018)

  • Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5(1), 90–98 (1986)

    Google Scholar 

  • Khosla, P., Volpe, R.: Superquadric artificial potentials for obstacle avoidance and approach. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, pp. 1778–17843 (1988). https://doi.org/10.1109/ROBOT.1988.12323

  • Kim, D., Kang, M., Yoon, S.-E.: Volumetric tree: Adaptive sparse graph for effective exploration of homotopy classes. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1496–1503 (2019)

  • Kim, S., Sreenath, K., Bhattacharya, S., Kumar, V.: Trajectory Planning for Systems with Homotopy Class Constraints. In: Latest Advances in Robot Kinematics (ARK), Innsbruck, Austria, pp. 83–90 (2012)

  • Kim, H., Cheang, U.K., Rogowski, L.W., Kim, M.J.: Motion planning of particle based microrobots for static obstacle avoidance. Journal of Micro-Bio Robotics 14(1–2), 41–49 (2018)

    Google Scholar 

  • Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences - PNAS 95(15), 8431–8435 (1998)

    MathSciNet  MATH  Google Scholar 

  • Koditschek, D.: Exact robot navigation by means of potential functions: Some topological considerations. In: Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1–6 (1987). https://doi.org/10.1109/ROBOT.1987.1088038

  • Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Adv. Appl. Math. 11(4), 412–442 (1990)

    MathSciNet  MATH  Google Scholar 

  • Kolur, K., Chintalapudi, S., Boots, B., Mukadam, M.: Online motion planning over multiple homotopy classes with gaussian process inference. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2358–2364 (2019)

  • Kowalczyk, W.: Rapid navigation function control for two-wheeled mobile robots. Journal of Intelligent & Robotic Systems 93(3–4), 687–697 (2018)

    Google Scholar 

  • Kowalczyk, W., Kowalczyk, W., Przybyla, M., Przybyla, M., Kozlowski, K., Kozlowski, K.: Set-point control of mobile robot with obstacle detection and avoidance using navigation function - experimental verification. Journal of Intelligent & Robotic Systems 85(3), 539–552 (2017)

    Google Scholar 

  • Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995–10012 (2000). https://doi.org/10.1109/ROBOT.2000.844730

  • Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2008). https://doi.org/10.2514/6.2008-7166.AIAA

  • Lamiraux, F., Bonnafous, D., Lefebvre, O.: Reactive path deformation for nonholonomic mobile robots. IEEE Trans. Rob. 20(6), 967–977 (2004)

    Google Scholar 

  • M.LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Ames, IA 50011 USA (June 1998)

  • LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The International Journal of Robotics Research 20(5), 378–400 (2001)

    Google Scholar 

  • LaValle, S.M., Branicky, M.S., Lindemann, S.R.: On the relationship between classical grid search and probabilistic roadmaps. The International Journal of Robotics Research 23(7–8), 673–692 (2004)

    Google Scholar 

  • Lee, J., Pippin, C., Balch, T.: Cost based planning with RRT in outdoor environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 684–689 (2008). https://doi.org/10.1109/IROS.2008.4651052

  • Lee, J.M.: Introduction to Smooth Manifolds., 2nd edn. Graduate Texts in Mathematics ; v.218. Springer, New York, NY (2002). https://doi.org/10.1007/978-1-4419-9982-5

  • Lee, J.M.: Introduction To Topological Manifolds, 2nd edn. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  • Leica, P., Chavez, D., Rosales, A., Roberti, F., Toibero, J.M., Carelli, R.: Strategy based on multiple objectives and null space for the formation of mobile robots and dynamic obstacle avoidance. Revista Politécnica (Quito) 33(1) (2014)

  • Lengyel, J., Reichert, M., Donald, B.R., Greenberg, D.P.: Real-time robot motion planning using rasterizing computer graphics hardware. Computer graphics (New York, N.Y.) 24(4), 327–335 (1990)

    Google Scholar 

  • Li, X., Zhao, G., Li, B.: Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments. Appl. Math. Model. 85, 210–230 (2020)

    MathSciNet  Google Scholar 

  • Lin, Y., Saripalli, S.: Sampling-based path planning for uav collision avoidance. IEEE Trans. Intell. Transp. Syst. 18(11), 3179–3192 (2017)

    Google Scholar 

  • Liu, G., Trinkle, J., Yang, Y., Luo, S.: Motion planning of planar closed chains based on structural sets. IEEE Access 8, 117203–117217 (2020)

    Google Scholar 

  • Liu, Y., Qi, N., Yao, W., Zhao, J., Xu, S.: Cooperative path planning for aerial recovery of a UAV swarm using genetic algorithm and homotopic approach. Appl. Sci. 10(12), 4154 (2020)

    Google Scholar 

  • Liu, Y., Zheng, Z., Qin, F.: Homotopy based optimal configuration space reduction for anytime robotic motion planning. Chin. J. Aeronaut. 34(1), 364–379 (2021)

    Google Scholar 

  • Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2(1–4), 403–430 (1987)

    MathSciNet  MATH  Google Scholar 

  • Masehian, E., Amin-Naseri, M.R.: A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. J. Robot. Syst. 21(6), 275–300 (2004)

    Google Scholar 

  • McFetridge, L., Ibrahim, M.Y.: A new methodology of mobile robot navigation: The agoraphilic algorithm. Robotics and Computer-Integrated Manufacturing 25(3), 545–551 (2009)

    Google Scholar 

  • McMahon, T., Thomas, S., Amato, N.M.: Sampling-based motion planning with reachable volumes for high-degree-of-freedom manipulators. The International Journal of Robotics Research 37(7), 779–817 (2018)

    Google Scholar 

  • Mediavilla, M., González, J.L., Fraile, J.C., Ramón Perán, J.: Reactive approach to on-line path planning for robot manipulators in dynamic environments. Robotica 20(4), 375–384 (2002)

    Google Scholar 

  • Montiel, O., Orozco-Rosas, U., Sepúlveda, R.: Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)

    Google Scholar 

  • Munkres, J.R.: Topology, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2000)

    MATH  Google Scholar 

  • Murphy, R.R., Hughes, K., Marzilli, A., Noll, E.: Integrating explicit path planning with reactive control of mobile robots using trulla. Robot. Auton. Syst. 27(4), 225–245 (1999)

    Google Scholar 

  • Needham, T.: Visual Complex Analysis. Oxford University Press Inc., New York, Oxford University Press (1997)

    MATH  Google Scholar 

  • Nicolaescu, L.: Homeomorphisms vs. Diffeomorphisms. Professor Nicolaescu’s notes on the topic. (2003). https://www3.nd.edu/~low lnicolae/FYsem2003.pdf

  • Nicolaescu, L.I.: Lectures on the Geometry of Manifolds vol. 32, 2nd edn. Ringgold Inc, Portland (2008). http://search.proquest.com/docview/200118389/

  • Noreen, I., Khan, A., Ryu, H., Doh, N.L., Habib, Z.: Optimal path planning in cluttered environment using RRT-AB. Intel. Serv. Robot. 11(1), 41–52 (2017)

    Google Scholar 

  • Olmstead Muhs, J.C., Yang, J.: A geodesics-based model for obstacle avoidance. In: 2005 Digital Human Modeling for Design and Engineering Symposium (2005). https://doi.org/10.4271/2005-01-2692

  • Oriolo, G.: Motion Planning 3 Artifical Potential Fields. Professor Oriolo’s notes for his class in Artificial Intelligence and Robotics. (2020). http://diag.uniroma1.it/oriolo/amr/slides/MotionPlanning3_Slides.pdf

  • Paikray, H.K., Das, P.K., Panda, S.: Optimal path planning of multi-robot in dynamic environment using hybridization of meta-heuristic algorithm. International journal of intelligent robotics and applications Online 6(4), 625–667 (2022)

    Google Scholar 

  • Park, J.-M., Kim, D.-W., Yoon, Y.-S., Kim, H.J., Yi, K.-S.: Obstacle avoidance of autonomous vehicles based on model predictive control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223(12), 1499–1516 (2009)

    Google Scholar 

  • Park, J., Karumanchi, S., Iagnemma, K.: Homotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programming. IEEE Trans. Rob. 31(5), 1101–1115 (2015)

    Google Scholar 

  • Persson, P.-O.: Mesh generation for implicit geometries. Ph.D. dissertation, Massachusetts Institute of Technology (February 2005). http://persson.berkeley.edu/thesis/persson-thesis.pdf

  • Persson, P.-O., Strang, G.: A simple mesh generator in matlab. SIAM Rev. 46(2), 329–345 (2004). https://doi.org/10.1137/S0036144503429121

    Article  MathSciNet  MATH  Google Scholar 

  • Porta, J.M., Jaillet, L., Bohigas, O.: Randomized path planning on manifolds based on higher-dimensional continuation. The International Journal of Robotics Research 31(2), 201–215 (2012)

    Google Scholar 

  • Pressley, A.: Elementary Differential Geometry, 2nd edn. Springer undergraduate mathematics series. Springer, London (2010). https://doi.org/10.1007/978-1-84882-891-9

    Book  MATH  Google Scholar 

  • Qin, L., Yin, Q., Zha, Y., Peng, Y.: Dynamic detection of topological information from grid-based generalized voronoi diagrams. Math. Probl. Eng. 2013, 1–11 (2013)

    MathSciNet  MATH  Google Scholar 

  • Quillen, P., Muñoz, J., Subbarao, K.: Path planning to a reachable state using minimum control effort based navigation functions. J. Astronaut. Sci. 66(4), 554–581 (2019)

    Google Scholar 

  • Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 802–8072 (1993). https://doi.org/10.1109/ROBOT.1993.291936

  • Quinlan, S.: Real-time modification of collision-free paths. ProQuest Dissertations Publishing (1995)

  • Qureshi, A.H., Iqbal, K.F., Qamar, S.M., Islam, F., Ayaz, Y., Muhammad, N.: Potential guided directional-RRT* for accelerated motion planning in cluttered environments. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 519–524 (2013). https://doi.org/10.1109/ICMA.2013.6617971

  • Qureshi, A.H., Mumtaz, S., Iqbal, K.F., Ali, B., Ayaz, Y., Ahmed, F., Muhammad, M.S., Hasan, O., Kim, W.Y., Ra, M.: Adaptive potential guided directional-RRT. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1887–1892 (2013). https://doi.org/10.1109/ROBIO.2013.6739744

  • Qureshi, A.H., Ayaz, Y.: Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments. Robot. Auton. Syst. 68, 1–11 (2015)

    Google Scholar 

  • Qureshi, A.H., Qureshi, A.H., Ayaz, Y., Ayaz, Y.: Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 40(6), 1079–1093 (2016)

    Google Scholar 

  • Radhakrishnan, S., Gueaieb, W.: Reconfigurable EKF for 2D SLAM. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), pp. 1–6 (2016). https://doi.org/10.1109/RTSI.2016.7740549

  • Radhakrishnan, S.: Observable 2D SLAM and Evidential Occupancy Grids. Master’s thesis, Carleton University (2014)

  • Rasekhipour, Y., Khajepour, A., Chen, S., Litkouhi, B.: A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Trans. Intell. Transp. Syst. 18(5), 1255–1267 (2017). https://doi.org/10.1109/TITS.2016.2604240

    Article  Google Scholar 

  • Rasekhipour, Y., Fadakar, I., Khajepour, A.: Autonomous driving motion planning with obstacles prioritization using lexicographic optimization. Control. Eng. Pract. 77, 235–246 (2018)

    Google Scholar 

  • Roy, D.: Algorithmic path planning of static robots in three dimensions using configuration space metrics. Robotica 29(2), 295–315 (2011)

    Google Scholar 

  • Ryu, J.C., Ryu, J.C., Park, F.C., Park, F.C., Kim, Y.Y., Kim, Y.Y.: Mobile robot path planning algorithm by equivalent conduction heat flow topology optimization. Struct. Multidiscip. Optim. 45(5), 703–715 (2012)

    MathSciNet  MATH  Google Scholar 

  • Savkin, A.V., Hoy, M.: Reactive and the shortest path navigation of a wheeled mobile robot in cluttered environments. Robotica 31(2), 323–330 (2013)

    Google Scholar 

  • Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences - PNAS 93(4), 1591–1595 (1996)

    MathSciNet  MATH  Google Scholar 

  • Sethian, J.A.: Fast marching methods. SIAM review 41(2), 199–235 (1999)

    Google Scholar 

  • Sgorbissa, A.: Integrated robot planning, path following, and obstacle avoidance in two and three dimensions: Wheeled robots, underwater vehicles, and multicopters. The International journal of robotics research 38(7), 853–876 (2019)

    Google Scholar 

  • Shvalb, N., Shoham, M., Liu, G., Trinkle, J.C.: Motion planning for a class of planar closed-chain manipulators. The International Journal of Robotics Research 26(5), 457–473 (2007)

    Google Scholar 

  • Siciliano, B.: Robotics Modelling, Planning and Control, 1st ed. 2009. edn. Advanced Textbooks in Control and Signal Processing. Springer, London (2009). https://doi.org/10.1007/978-1-84628-642-1

  • Simeon, T., Laumond, J.-P., Van Geem, C.V., Cortes, J.: Computer aided motion: Move3d within molog. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 2, pp. 1494–1499 (2001). https://doi.org/10.1109/ROBOT.2001.932822

  • Stein, E.M.: Complex Analysis. Princeton lectures in analysis ; 2. Princeton University Press, Princeton, N.J (2003)

  • Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3310–33174 (1994). https://doi.org/10.1109/ROBOT.1994.351061

  • Stopp, A., Riethmuller, T.: Fast reactive path planning by 2d and 3d multi-layer spatial grids for mobile robot navigation. In: Proceedings of Tenth International Symposium on Intelligent Control, pp. 545–550 (1995)

  • Suh, J., Gong, J., Oh, S.: Fast sampling-based cost-aware path planning with nonmyopic extensions using cross entropy. IEEE Trans. Rob. 33(6), 1313–1326 (2017)

    Google Scholar 

  • Tanner, H.G., Kumar, A.: Towards decentralization of multi-robot navigation functions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4132–4137 (2005)

  • Tao, S., Tan, J.: Path planning with obstacle avoidance based on normalized r -functions. Journal of Robotics 2018, 1–10 (2018)

    Google Scholar 

  • Trinkle, J.C., Milgram, R.J.: Complete path planning for closed kinematic chains with spherical joints. The International Journal of Robotics Research 21(9), 773–789 (2002)

    Google Scholar 

  • Tu, L.W.: An Introduction to Manifolds, 2nd edn. Universitext. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7400-6

    Book  Google Scholar 

  • van den Berg, J., Overmars, M.: Planning time-minimal safe paths amidst unpredictably moving obstacles. The International Journal of Robotics Research 27(11–12), 1274–1294 (2008)

    MATH  Google Scholar 

  • Vazquez-Leal, H., Marin-Hernandez, A., Khan, Y., Yıldırım, A., Filobello-Nino, U., Castaneda-Sheissa, R., Jimenez-Fernandez, V.M.: Exploring collision-free path planning by using homotopy continuation methods. Appl. Math. Comput. 219(14), 7514–7532 (2013)

    MathSciNet  MATH  Google Scholar 

  • Volpe, R., Khosla, P.: Artificial potentials with elliptical isopotential contours for obstacle avoidance. In: 26th IEEE Conference on Decision and Control, vol. 26, pp. 180–185 (1987). https://doi.org/10.1109/CDC.1987.272738

  • Volpe, R., Khosla, P.: Manipulator control with superquadric artificial potential functions: theory and experiments. IEEE Trans. Syst. Man Cybern. 20(6), 1423–1436 (1990). https://doi.org/10.1109/21.61211

    Article  Google Scholar 

  • Wada, H., Kinugawa, J., Kosuge, K.: Reactive motion planning using time-layered c-spaces for a collaborative robot pady. Adv. Robot. 35(8), 490–503 (2021)

    Google Scholar 

  • Wang, C., Mao, Y.S., Du, K.J.: Simulation on local obstacle avoidance algorithm for unmanned surface vehicle. International Journal of Simulation Modelling 15(3), 460–472 (2016)

    Google Scholar 

  • Wang, W., Zuo, L., Xu, X.: A learning-based multi-rrt approach for robot path planning in narrow passages. Journal of Intelligent & Robotic Systems 90(1–2), 81–100 (2017)

    Google Scholar 

  • Wang, D., Wang, P., Zhang, X., Guo, X., Shu, Y., Tian, X.: An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model. Ocean Eng. 206, 107356 (2020)

    Google Scholar 

  • Wang, B., Liu, Z., Li, Q., Prorok, A.: Mobile robot path planning in dynamic environments through globally guided reinforcement learning. IEEE Robotics and Automation Letters 5(4), 6932–6939 (2020)

    Google Scholar 

  • Wei, K., Ren, B.: A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. Sensors (Basel, Switzerland) 18(2), 571 (2018)

    Google Scholar 

  • Wilson, J.: Manifolds. Notes for graduate students via seminar by Dr.Jenny Wilson (2012). http://www.math.lsa.umich.edu/~low jchw/WOMPtalk-Manifolds.pdf

  • Wu, K., Lo, C., Lin, Y., Liu, J.: 3D path planning based on nonlinear geodesic equation. In: 11th IEEE International Conference on Control Automation (ICCA), pp. 342–347 (2014). https://doi.org/10.1109/ICCA.2014.6870943

  • Wu, A., How, J.P.: Guaranteed infinite horizon avoidance of unpredictable, dynamically constrained obstacles. Auton. Robot. 32(3), 227–242 (2012)

    Google Scholar 

  • Wu, K.-L., Ho, T.-J., Huang, S.A., Lin, K.-H., Lin, Y.-C., Liu, J.-S.: Path planning and replanning for mobile robot navigation on 3D terrain: An approach based on geodesic. Math. Probl. Eng. 2016, 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  • Xu, B., Xu, B., Stilwell, D.J., Stilwell, D.J., Kurdila, A.J., Kurdila, A.J.: Fast path re-planning based on fast marching and level sets. Journal of Intelligent & Robotic Systems 71(3), 303–317 (2013)

    Google Scholar 

  • Yao, W., Qi, N., Zhao, J., Wan, N.: Bounded curvature path planning with expected length for dubins vehicle entering target manifold. Robot. Auton. Syst. 97, 217–229 (2017)

    Google Scholar 

  • Yi, D., Goodrich, M., Seppi, K.: Homotopy-aware RRT: Toward human-robot topological path-planning. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction. HRI ’16, pp. 279–286 (2016)

  • Yoon, Y., Shin, J., Kim, H.J., Park, Y., Sastry, S.: Model-predictive active steering and obstacle avoidance for autonomous ground vehicles. Control. Eng. Pract. 17(7), 741–750 (2009)

    Google Scholar 

  • Zhang, B., Liu, Y., Lu, Q., Wang, J.: A path planning strategy for searching the most reliable path in uncertain environments. Int. J. Adv. Rob. Syst. 13(5), 172988141665775 (2016). https://doi.org/10.1177/1729881416657751

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Grant RGPIN-2014-06512.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SR. The first draft of the manuscript was written by SR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wail Gueaieb.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, S., Gueaieb, W. Constraint-free discretized manifold-based path planner. Int J Intell Robot Appl 7, 810–855 (2023). https://doi.org/10.1007/s41315-023-00300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-023-00300-3

Keywords

Navigation