Skip to main content
Log in

A review on quadrotor attitude control strategies

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Quadrotors have been more frequently used in different areas, from aerial photography to drug delivery in medical emergencies. These vehicles have high maneuverability, which makes them suitable for carrying out missions that humans would not be able to do due to physical constraints. They can be used in inhospitable environments where the physical integrity and health of humans would be compromised. However, they are highly nonlinear and multivariable systems whose dynamics are strongly coupled. These characteristics turn attitude control design into a complex task. Furthermore, the controller has to be able to deal with uncertainties and exogenous disturbances in practice, intensifying the difficulty of the control problem. Therefore, a quadrotor attitude control must have high robustness and fast response without compromising its global stability. Aiming to gather solutions to this control problem, this article provides a detailed and in-depth discussion on quadrotor attitude control strategies for flight control designers, including angular representation, controller stability, fault tolerance, actuator saturation, and strategies for exogenous disturbance rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdollahi, T., Salehfard, S., Xiong, C.-H., Ying, J.-F.: Simplified fuzzy-padé controller for attitude control of quadrotor helicopters. IET Control The Appl 12, 310–317 (2017)

    Article  Google Scholar 

  • Ahmed, N., Raza, A., Shah, S.A.A., Khan, R.: Robust composite-disturbance observer based flight control of quadrotor attitude. J Intel Robotic Syst 103(1), 1–18 (2021)

    Google Scholar 

  • Altmann, S.L.: Rotations, Quaternions, and Double Groups. Courier Corporation, New York (2005)

    Google Scholar 

  • Aurambout, J.-P., Gkoumas, K., Ciuffo, B.: Last mile delivery by drones: An estimation of viable market potential and access to citizens across european cities. Europ Trans Res Rev 11(1), 1–21 (2019)

    Article  Google Scholar 

  • Avram, R.C., Zhang, X., Muse, J.: Nonlinear adaptive fault-tolerant quadrotor altitude and attitude tracking with multiple actuator faults. IEEE Trans. Control Syst. Technol. 26(2), 701–707 (2018)

    Article  Google Scholar 

  • Balogoun, I., Marx, S., Liard, T., Plestan, F.: Super-twisting sliding mode control for the stabilization of a linear hyperbolic system. IEEE Control Syst Lett 7, 1–6 (2022)

    Article  MathSciNet  Google Scholar 

  • Benallegue, A., Mokhtari, A., Fridman, L.: Feedback linearization and high order sliding mode observer for a quadrotor UAV. In: International Workshop on Variable Structure Systems (IWVSS), pp. 365–372 (2006). IEEE

  • Bo, G., Xin, L., Hui, Z., Ling, W.: Quadrotor helicopter attitude control using cascade PID. In: Chinese Control and Decision Conference (CCDC), pp. 5158–5163 (2016). IEEE

  • Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2451–2456 (2004). IEEE

  • Bouabdallah, S., Siegwart, R.: Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: International Conference on Robotics and Automation (ICRA), pp. 2247–2252 (2005). IEEE

  • Butcher, P.A., Piddocke, T.P., Colefax, A.P., Hoade, B., Peddemors, V.M., Borg, L., Cullis, B.R.: Beach safety: can drones provide a platform for sighting sharks? Wildl. Res. 46(8), 701–712 (2019)

    Article  Google Scholar 

  • Butilă, E.V., Boboc, R.G.: Urban traffic monitoring and analysis using unmanned aerial vehicles (UAVs): A systematic literature review. Remote Sensing 14(3), 620 (2022)

    Article  ADS  Google Scholar 

  • Castillo, A., Sanz, R., Garcia, P., Albertos, P.: A quaternion-based and active disturbance rejection attitude control for quadrotor. In: International Conference on Information and Automation (ICIA), pp. 240–245 (2016). IEEE

  • Castillo, A., Sanz, R., Garcia, P., Qiu, W., Wang, H., Xu, C.: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers. Control. Eng. Pract. 82, 14–23 (2019)

    Article  Google Scholar 

  • Chaturvedi, S.K., Sekhar, R., Banerjee, S., Kamal, H.: Comparative review study of military and civilian unmanned aerial vehicles (UAVs). INCAS Bulletin 11(3), 183–198 (2019)

    Article  Google Scholar 

  • Chen, Y., He, Y., Zhou, M.: Modeling and control of a quadrotor helicopter system under impact of wind field. Res. J. Appl. Sci. Eng. Technol. 6, 3214–3221 (2013)

    Article  Google Scholar 

  • Chen, Q., Ren, X., Na, J., Zheng, D.: Adaptive robust finite-time neural control of uncertain pmsm servo system with nonlinear dead zone. Neural Comput. Appl. 28(12), 3725–3736 (2017)

    Article  CAS  Google Scholar 

  • Chen, Q., Xie, S., He, X.: Neural-network-based adaptive singularity-free fixed-time attitude tracking control for spacecrafts. IEEE Trans Cyber 51(10), 5032–5045 (2020)

    Article  Google Scholar 

  • Chen, Q., Ye, Y., Hu, Z., Na, J., Wang, S.: Finite-time approximation-free attitude control of quadrotors: theory and experiments. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1780–1792 (2021)

    Article  ADS  Google Scholar 

  • Chen, Q., Tao, M., He, X., Tao, L.: Fuzzy adaptive nonsingular fixed-time attitude tracking control of quadrotor UAVs. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2864–2877 (2021)

    Article  ADS  Google Scholar 

  • Chen, H., Shao, X., Xu, L., Jia, R.: Finite-time attitude control with chattering suppression for quadrotors based on high-order extended state observer. IEEE Access 9, 159724–159733 (2021)

    Article  Google Scholar 

  • Chen, L., Liu, Z., Gao, H., Wang, G.: Robust adaptive recursive sliding mode attitude control for a quadrotor with unknown disturbances. ISA Trans. 122, 114–125 (2022)

    Article  PubMed  Google Scholar 

  • Chincholkar, S.H., Jiang, W., Chan, C.-Y.: A normalized output error-based sliding-mode controller for the DC-DC cascade boost converter. IEEE Trans. Circuits Syst. II Exp Briefs 67(1), 92–96 (2019)

    Google Scholar 

  • Chu, H., Jing, Q., Chang, Z., Shao, Y., Zhang, X., Mukherjee, M.: Quadrotor attitude control via feedforward all-coefficient adaptive theory. IEEE Access 8, 116441–116453 (2020)

    Article  Google Scholar 

  • Cutler, M., How, J.P.: Analysis and control of a variable-pitch quadrotor for agile flight. J. Dyn. Syst. Meas. Contr. 137(10), 101002 (2015)

    Article  Google Scholar 

  • del Cerro, J., Cruz Ulloa, C., Barrientos, A., de León Rivas, J.: Unmanned aerial vehicles in agriculture: A survey. Agronomy 11(2), 203 (2021)

    Article  Google Scholar 

  • Derafa, L., Benallegue, A., Fridman, L.: Super twisting control algorithm for the attitude tracking of a four rotors UAV. J. Franklin Inst. 349(2), 685–699 (2012)

    Article  MathSciNet  Google Scholar 

  • Din, S.U., Rehman, Fu., Khan, Q.: Smooth super-twisting sliding mode control for the class of underactuated systems. PLoS ONE 13(10), 0203667 (2018)

    Article  Google Scholar 

  • Dooraki, A.R., Lee, D.-J.: An innovative bio-inspired flight controller for quad-rotor drones: Quad-rotor drone learning to fly using reinforcement learning. Robot. Auton. Syst. 135, 103671 (2021)

    Article  Google Scholar 

  • Dörfler, F., Tesi, P., De Persis, C.: On the role of regularization in direct data-driven LQR control. In: 61st Conference on Decision and Control (CDC), pp. 1091–1098 (2022). IEEE

  • Dorzhigulov, A., Bissengaliuly, B., Spencer, B.F., Kim, J., James, A.P.: ANFIS based quadrotor drone altitude control implementation on Raspberry Pi platform. Analog Integr. Circ. Sig. Process 95, 435–445 (2018)

    Article  Google Scholar 

  • Doukhi, O., Lee, D.J.: Neural network-based robust adaptive certainty equivalent controller for quadrotor UAV with unknown disturbances. Int. J. Control Autom. Syst. 17(9), 2365–2374 (2019)

    Article  Google Scholar 

  • Duc, M.N., Trong, T.N., Xuan, Y.S.: The quadrotor mav system using PID control. In: International Conference on Mechatronics and Automation (ICMA), pp. 506–510 (2015). IEEE

  • Emran, B.J., Najjaran, H.: A review of quadrotor: An underactuated mechanical system. Annual Rev Cont 46, 165–180 (2018)

    Article  MathSciNet  Google Scholar 

  • Escobar, A.G., Alazki, H., Valenzuela, J.E., Garcia, O.: Embedded super twisting control for the attitude of a quadrotor. IEEE Lat. Am. Trans. 14(9), 3974–3979 (2016)

    Article  Google Scholar 

  • Evald, P.J.D.O., Hollweg, G.V., Tambara, R.V., Gründling, H.A.: Lyapunov stability analysis of a robust model reference adaptive PI controller for systems with matched and unmatched dynamics. J. Franklin Inst. 359(13), 6659–6689 (2022)

    Article  MathSciNet  Google Scholar 

  • Evald, P.JDd.O., Hollweg, G.V., Tambara, R.V., Gründling, H.A.: A hybrid robust model reference adaptive controller and proportional integral controller without reference model for partially modeled systems. Int. J. Adapt. Control Signal Process. 37(8), 2113–2132 (2023)

    Article  MathSciNet  Google Scholar 

  • Falcón, R., Ríos, H., Dzul, A.: Comparative analysis of continuous sliding-modes control strategies for quad-rotor robust tracking. Control. Eng. Pract. 90, 241–256 (2019)

    Article  Google Scholar 

  • Farid, G., Hongwei, M., Ali, S.M., Liwei, Q.: A review on linear and nonlinear control techniques for position and attitude control of a quadrotor. Control. Intell. Syst. 45(1), 43–57 (2017)

    MathSciNet  Google Scholar 

  • Gambhire, S., Kishore, D.R., Londhe, P., Pawar, S.: Review of sliding mode based control techniques for control system applications. Int J Dyn Cont 9, 363–378 (2021)

    Article  MathSciNet  Google Scholar 

  • Giordan, D., Adams, M.S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., De Berardinis, P., Dominici, D., Godone, D., Hobbs, P.: The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull. Eng. Geol. Env. 79(7), 3437–3481 (2020)

    Article  CAS  Google Scholar 

  • Gomez, C., Purdie, H.: UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring-a review. Geoenviron Disast 3(1), 1–11 (2016)

    Article  Google Scholar 

  • Gong, W., Li, B., Yang, Y., Ban, H., Xiao, B.: Fixed-time integral-type sliding mode control for the quadrotor UAV attitude stabilization under actuator failures. Aerosp. Sci. Technol. 95, 105444 (2019)

    Article  Google Scholar 

  • Goodarzi, F., Lee, D., Lee, T.: Geometric nonlinear PID control of a quadrotor UAV on SE(3). In: European Control Conference (ECC), pp. 3845–3850 (2013). IEEE

  • Greenwood, W.W., Lynch, J.P., Zekkos, D.: Applications of UAVs in civil infrastructure. J. Infrastruct. Syst. 25(2), 04019002 (2019)

    Article  Google Scholar 

  • Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter. Control. Eng. Pract. 19(8), 790–797 (2011)

    Article  Google Scholar 

  • Guo, Y., Jiang, B., Zhang, Y.: A novel robust attitude control for quadrotor aircraft subject to actuator faults and wind gusts. IEEE/CAA J Automatica Sinica 5(1), 292–300 (2018)

    Article  MathSciNet  Google Scholar 

  • Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  • Han, H., Cheng, J., Xi, Z., Yao, B.: Cascade flight control of quadrotors based on deep reinforcement learning. IEEE Robotics Autom Lett 7(4), 11134–11141 (2022)

    Article  Google Scholar 

  • Harshavarthini, S., Sakthivel, R., Ahn, C.K.: Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults. Nonlinear Dyn. 96(4), 2681–2692 (2019)

    Article  Google Scholar 

  • He, L., Aouf, N., Song, B.: Explainable deep reinforcement learning for UAV autonomous path planning. Aerosp. Sci. Technol. 118, 107052 (2021)

    Article  Google Scholar 

  • He, X., Tao, M., Xie, S., Chen, Q.: Neuro-adaptive singularity-free finite-time attitude tracking control of quadrotor UAVs. Comput Elect Eng 96, 107485 (2021)

    Article  Google Scholar 

  • Hollweg, G.V., Evald, P.J.D.O., Milbradt, D.M.C., Tambara, R.V., Gründling, H.A.: Design of continuous-time model reference adaptive and super-twisting sliding mode controller. Math. Comput. Simul. 201, 215–238 (2022)

    Article  MathSciNet  Google Scholar 

  • Hollweg, G.V., Evald, P.J.D.O., Milbradt, D.M.C., Tambara, R.V., Gründling, H.A.: Lyapunov stability analysis of discrete-time robust adaptive super-twisting sliding mode controller. Int. J. Control 96(3), 614–627 (2023)

    Article  MathSciNet  Google Scholar 

  • Hou, S., Wang, C., Chu, Y., Fei, J.: Neural-observer-based terminal sliding mode control: Design and application. IEEE Trans. Fuzzy Syst. 30(11), 4800–4814 (2022)

    Article  Google Scholar 

  • Hua, C.-C., Wang, K., Chen, J.-N., You, X.: Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn. 94(1), 343–354 (2018)

    Article  Google Scholar 

  • Huang, J., Zeng, W., Xiong, H., Noack, B.R., Hu, G., Liu, S., Xu, Y., Cao, H.: Symmetry-informed reinforcement learning and its application to the attitude control of quadrotors. IEEE Transactions on Artificial Intelligence, (2023)

  • Iost Filho, F.H., Heldens, W.B., Kong, Z., de Lange, E.S.: Drones: innovative technology for use in precision pest management. J. Econ. Entomol. 113(1), 1–25 (2020)

    Article  PubMed  Google Scholar 

  • Izaguirre-Espinosa, C., Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V., Castillo, P.: Attitude control of quadrotors based on fractional sliding modes: theory and experiments. IET Control Theory Appl 10(7), 825–832 (2016)

    Article  MathSciNet  Google Scholar 

  • Izaguirre-Espinosa, C., Muñoz-Vázquez, A.-J., Sanchez-Orta, A., Parra-Vega, V., Castillo, P.: Contact force tracking of quadrotors based on robust attitude control. Control. Eng. Pract. 78, 89–96 (2018)

    Article  Google Scholar 

  • Jayakrishnan, H.J.: Position and attitude control of a quadrotor UAV using super twisting sliding mode. IFAC-PapersOnLine 49(1), 284–289 (2016)

    Article  MathSciNet  Google Scholar 

  • Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 68, 299–307 (2017)

    Article  Google Scholar 

  • Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Industr. Electron. 56(9), 3593–3601 (2009)

    Article  Google Scholar 

  • Kahouadji, M., Mokhtari, M.R., Choukchou-Braham, A., Cherki, B.: Real-time attitude control of 3 DOF quadrotor UAV using modified super twisting algorithm. J. Franklin Inst. 357(5), 2681–2695 (2020)

    Article  MathSciNet  Google Scholar 

  • Kamalifar, A., Menhaj, M., Monfared, M.N., Fakharian, A.: Design of robust model reference adaptive controller for a wider class of nonlinear systems. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1–13 (2022)

  • Karimi, A., Garcia, D., Longchamp, R.: PID controller tuning using bode’s integrals. IEEE Trans. Control Syst. Technol. 11(6), 812–821 (2003)

    Article  Google Scholar 

  • Khan, M.A., Ectors, W., Bellemans, T., Janssens, D., Wets, G.: UAV-based traffic analysis: A universal guiding framework based on literature survey. Transp Res Proced 22, 541–550 (2017)

    Article  Google Scholar 

  • Khatoon, S., Nasiruddin, I., Shahid, M.: Design and simulation of a hybrid PD-ANFIS controller for attitude tracking control of a quadrotor UAV. Arab. J. Sci. Eng. 42(12), 5211–5229 (2017)

    Article  MathSciNet  Google Scholar 

  • Kim, J., Gadsden, S.A., Wilkerson, S.A.: A comprehensive survey of control strategies for autonomous quadrotors. Can. J. Electr. Comput. Eng. 43(1), 3–16 (2019)

    Article  Google Scholar 

  • Kulathunga, G.: A reinforcement learning based path planning approach in 3D environment. Procedia Comp Sci 212, 152–160 (2022)

    Article  Google Scholar 

  • Labbadi, M., Cherkaoui, M.: Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans. 99, 290–304 (2020)

    Article  PubMed  Google Scholar 

  • Li, X., Zhang, J., Han, J.: Trajectory planning of load transportation with multi-quadrotors based on reinforcement learning algorithm. Aerosp. Sci. Technol. 116, 106887 (2021)

    Article  Google Scholar 

  • Li, M., Cai, Z., Zhao, J., Wang, J., Wang, Y.: Disturbance rejection and high dynamic quadrotor control based on reinforcement learning and supervised learning. Neural Comput. Appl. 34(13), 11141–11161 (2022)

    Article  Google Scholar 

  • Liu, C., Jiang, B., Zhang, K.: Incipient fault detection using an associated adaptive and sliding-mode observer for quadrotor helicopter attitude control systems. Circuits Syst Signal Proces 35(10), 3555–3574 (2016)

    Article  MathSciNet  Google Scholar 

  • Liu, H., Li, D., Zuo, Z., Zhong, Y.: Robust attitude control for quadrotors with input time delays. Control. Eng. Pract. 58, 142–149 (2017)

    Article  Google Scholar 

  • Liu, H., Xi, J., Zhong, Y.: Robust attitude stabilization for nonlinear quadrotor systems with uncertainties and delays. IEEE Trans. Industr. Electron. 64(7), 5585–5594 (2017)

    Article  Google Scholar 

  • Liu, K., Wang, X., Wang, R., Sun, G., Wang, X.: Antisaturation finite-time attitude tracking control based observer for a quadrotor. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 2047–2051 (2020)

    Google Scholar 

  • López-Gutiérrez, R., Rodriguez-Mata, A.E., Salazar, S., González-Hernández, I., Lozano, R.: Robust quadrotor control: attitude and altitude real-time results. J Intel Robotic Syst 88(2), 299–312 (2017)

    Article  Google Scholar 

  • Lotufo, M.A., Colangelo, L., Perez-Montenegro, C., Canuto, E., Novara, C.: UAV quadrotor attitude control: An ADRC-EMC combined approach. Control. Eng. Pract. 84, 13–22 (2019)

    Article  Google Scholar 

  • Lozano, R., Castillo, P., Garcia, P., Dzul, A.: Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica 40(4), 603–612 (2004)

    Article  MathSciNet  Google Scholar 

  • Lu, Q., Ren, B., Parameswaran, S., Zhong, Q.-C.: Uncertainty and disturbance estimator-based robust trajectory tracking control for a quadrotor in a global positioning system-denied environment. Journal of Dynamic Systems, Measurement, and Control 140(3) (2018)

  • Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  • Ma, D., Xia, Y., Shen, G., Jiang, H., Hao, C.: Practical fixed-time disturbance rejection control for quadrotor attitude tracking. IEEE Trans. Industr. Electron. 68(8), 7274–7283 (2020)

    Article  Google Scholar 

  • Martins, L., Cardeira, C., Oliveira, P.: Feedback linearization with zero dynamics stabilization for quadrotor control. J Intel Robotic Syst 101(1), 1–17 (2021)

    Google Scholar 

  • Mehta, A., Bandyopadhyay, B.: Emerging trends in sliding mode control. Studies in Systems, Decision and Control 318 (2021)

  • Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A.S., Kadri, A., Tuncer, A.: UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Commun. Mag. 55(3), 22–28 (2017)

    Article  Google Scholar 

  • Milbradt, D.M.C., Evald, P.J.D.O., Hollweg, G.V., Gründling, H.A.: A hybrid robust adaptive sliding mode controller for partially modelled systems: Discrete-time lyapunov stability analysis and application. Nonlinear Anal. Hybrid Syst 48, 101333 (2023)

    Article  MathSciNet  Google Scholar 

  • Milbradt, D.M.C., Evald, P.J.D.O., Hollweg, G.V., Gründling, H.A.: Discrete-time analysis of a robust model reference adaptive sliding mode control. Int. J. Control Autom. Syst. 21(5), 1383–1393 (2023)

    Article  Google Scholar 

  • Mitka, E., Mouroutsos, S.G.: Classification of drones. Am J Eng Res 6(7), 36–41 (2017)

    Google Scholar 

  • Mobayen, S.: Adaptive global sliding mode control of underactuated systems using a super-twisting scheme: an experimental study. J. Vib. Control 25(16), 2215–2224 (2019)

    Article  MathSciNet  Google Scholar 

  • Mobayen, S., Bayat, F., S, ud Din, Vu, M.T.: Barrier function-based adaptive nonsingular terminal sliding mode control technique for a class of disturbed nonlinear systems. ISA Trans. 134, 481–496 (2023)

    Article  PubMed  Google Scholar 

  • Modirrousta, A., Khodabandeh, M.: A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances. Aerosp. Sci. Technol. 45, 294–308 (2015)

    Article  Google Scholar 

  • Mofid, O., Mobayen, S., Wong, W.-K.: Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance. IEEE Access 9, 3428–3440 (2020)

    Article  Google Scholar 

  • Mogili, U.R., Deepak, B.: Review on application of drone systems in precision agriculture. Proced Comput Sci 133, 502–509 (2018)

    Article  Google Scholar 

  • Na, J., Chen, Q., Ren, X., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Industr. Electron. 61(1), 486–494 (2013)

    Article  Google Scholar 

  • Najm, A.A., Ibraheem, I.K.: Altitude and attitude stabilization of UAV quadrotor system using improved active disturbance rejection control. Arab. J. Sci. Eng. 45(3), 1985–1999 (2020)

    Article  Google Scholar 

  • Nascimento, T.P., Saska, M.: Position and attitude control of multi-rotor aerial vehicles: A survey. Annu. Rev. Control. 48, 129–146 (2019)

    Article  MathSciNet  Google Scholar 

  • Nex, F., Remondino, F.: UAV for 3D mapping applications: a review. Appl Geomat 6(1), 1–15 (2014)

    Article  Google Scholar 

  • Nian, X., Chen, W., Chu, X., Xu, Z.: Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems. Int. J. Control 93(3), 725–737 (2018)

    Article  MathSciNet  Google Scholar 

  • Nie, L., Cai, B., Zhu, Y., Yang, J., Zhang, L.: Switched linear parameter-varying tracking control for quadrotors with large attitude angles and time-varying inertia. Optimal Control Appl Method 42(5), 1320–1336 (2021)

    Article  MathSciNet  Google Scholar 

  • Noor, N.M., Abdullah, A., Hashim, M.: Remote sensing UAV/drones and its applications for urban areas: A review. In: IOP Conference Series: Earth and Environmental Science, vol. 169, p. 012003 (2018). IOP Publishing

  • Noordin, A., Mohd Basri, M.A., Mohamed, Z., Mat Lazim, I.: Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization. Arab. J. Sci. Eng. 46(2), 963–981 (2021)

    Article  Google Scholar 

  • Noormohammadi-Asl, A., Esrafilian, O., Arzati, M.A., Taghirad, H.D.: System identification and H\(_\infty\)-based control of quadrotor attitude. Mech. Syst. Signal Process. 135, 106358 (2020)

    Article  Google Scholar 

  • Oliva-Palomo, F., Muñoz-Vázquez, A.J., Sánchez-Orta, A., Parra-Vega, V., Izaguirre-Espinosa, C., Castillo, P.: A fractional nonlinear PI-structure control for robust attitude tracking of quadrotors. IEEE Trans. Aerosp. Electron. Syst. 55(6), 2911–2920 (2019)

    Article  ADS  Google Scholar 

  • Ou, J., Guo, X., Zhu, M., Lou, W.: Autonomous quadrotor obstacle avoidance based on dueling double deep recurrent Q-learning with monocular vision. Neurocomputing 441, 300–310 (2021)

    Article  Google Scholar 

  • Patel, A.R., Patel, M.A., Vyas, D.R.: Modeling and analysis of quadrotor using sliding mode control. In: Proceedings of the 44th Southeastern Symposium on System Theory (SSST), pp. 111–114 (2012). IEEE

  • PX4: PX4 controller diagrams. https://docs.px4.io/master/en/flight_stack/controller_diagrams.html. Accessed: 2022-02-20

  • Qi, Y., Zhu, Y., Wang, J., Shan, J., Liu, H.H.: Mude-based control of quadrotor for accurate attitude tracking. Control. Eng. Pract. 108, 104721 (2021)

    Article  Google Scholar 

  • Razmi, H., Afshinfar, S.: Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV. Aerosp. Sci. Technol. 91, 12–27 (2019)

    Article  Google Scholar 

  • Ren, H., Zhao, Y., Xiao, W., Hu, Z.: A review of UAV monitoring in mining areas: Current status and future perspectives. Int J Coal Sci Techn 6(3), 320–333 (2019)

    Article  Google Scholar 

  • Ríos, H., Falcón, R., González, O.A., Dzul, A.: Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application. IEEE Trans. Industr. Electron. 66(2), 1264–1272 (2018)

    Article  Google Scholar 

  • Rubí, B., Morcego, B., Pérez, R.: Deep reinforcement learning for quadrotor path following and obstacle avoidance. Deep Learning for Unmanned Systems, 563–633 (2021)

  • Rubí, B., Morcego, B., Pérez, R.: Quadrotor path following and reactive obstacle avoidance with deep reinforcement learning. J Intel Robotic Syst 103, 1–17 (2021)

    Google Scholar 

  • Sadraey, M.H.: Design of Unmanned Aerial Systems. John Wiley & Sons, USA (2020)

    Book  Google Scholar 

  • Salehfard, S., Abdollahi, T., Xiong, C.-H., Ai, Y.-H.: An optimized fuzzy-padé controller applied to attitude stabilization of a quadrotor. Int. J. Control Autom. Syst. 16(3), 1425–1434 (2018)

    Article  Google Scholar 

  • Scampicchio, A., Aravkin, A., Pillonetto, G.: Stable and robust LQR design via scenario approach. Automatica 129, 109571 (2021)

    Article  MathSciNet  Google Scholar 

  • Shakhatreh, H., Sawalmeh, A.H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N.S., Khreishah, A., Guizani, M.: Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 7, 48572–48634 (2019)

    Article  Google Scholar 

  • Shastry, A.K., Kothari, M., Abhishek, A.: Generalized flight dynamic model of quadrotor using hybrid blade element momentum theory. J. Aircr. 55(5), 2162–2168 (2018)

    Article  Google Scholar 

  • Shi, D., Wu, Z., Chou, W.: Generalized extended state observer based high precision attitude control of quadrotor vehicles subject to wind disturbance. IEEE Access 6, 32349–32359 (2018)

    Article  Google Scholar 

  • Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)

    Book  Google Scholar 

  • Shuster, M.D.: A survey of attitude representations. Navigation 8(9), 439–517 (1993)

    MathSciNet  Google Scholar 

  • Si, H., Shao, X., Zhang, W.: MLP-based neural guaranteed performance control for mems gyroscope with logarithmic quantizer. IEEE Access 8, 38596–38605 (2020)

    Article  Google Scholar 

  • Sivakumar, M., TYJ, N.M.: A literature survey of unmanned aerial vehicle usage for civil applications. Journal of Aerospace Technology and Management 13 (2021)

  • Sugawara, Y., Shimada, A.: Attitude control of quadrotor in consideration of the effects of a pole based on limited pole placement. Elect Eng Japan 198(1), 34–44 (2017)

    Article  Google Scholar 

  • Sun, Q., Fang, J., Zheng, W.X., Tang, Y.: Aggressive quadrotor flight using curiosity-driven reinforcement learning. IEEE Trans. Industr. Electron. 69(12), 13838–13848 (2022)

    Article  Google Scholar 

  • Tal, E., Karaman, S.: Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness. IEEE Trans. Control Syst. Technol. 29(3), 1203–1218 (2020)

    Article  Google Scholar 

  • Tang, P., Lin, D., Zheng, D., Fan, S., Ye, J.: Observer based finite-time fault tolerant quadrotor attitude control with actuator faults. Aerosp. Sci. Technol. 104, 105968 (2020)

    Article  Google Scholar 

  • Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  • Tian, B., Liu, L., Lu, H., Zuo, Z., Zong, Q., Zhang, Y.: Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation. IEEE Trans. Industr. Electron. 65(3), 2567–2577 (2017)

    Article  Google Scholar 

  • Tian, B., Cui, J., Lu, H., Zuo, Z., Zong, Q.: Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons. IEEE Trans. Industr. Electron. 66(12), 9428–9438 (2019)

    Article  Google Scholar 

  • Urakawa, Y.: Parameter design for a digital control system with calculation delay using a limited pole placement method. IEEJ Transact Indust Appl 133(3), 272–281 (2013)

    Article  ADS  Google Scholar 

  • Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles, vol. 1. Springer, USA (2015)

    Book  Google Scholar 

  • Van, M., Ge, S.S., Ren, H.: Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control. IEEE Trans Syst, Man, Cyber Syst 47(2), 221–228 (2016)

    Google Scholar 

  • Wang, X., Lin, H.: Design and frequency analysis of continuous finite-time-convergent differentiator. Aerosp. Sci. Technol. 18(1), 69–78 (2012)

    Article  ADS  Google Scholar 

  • Wang, H., Ye, X., Tian, Y., Zheng, G., Christov, N.: Model-free-based terminal SMC of quadrotor attitude and position. IEEE Trans. Aerosp. Electron. Syst. 52(5), 2519–2528 (2016)

    Article  ADS  Google Scholar 

  • Wang, B., Yu, X., Mu, L., Zhang, Y.: Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and external disturbances. Mech. Syst. Signal Process. 120, 727–743 (2019)

    Article  ADS  Google Scholar 

  • Wang, H., Li, Z., Xiong, H., Nian, X.: Robust H\(_\infty\) attitude tracking control of a quadrotor UAV on SO(3) via variation-based linearization and interval matrix approach. ISA Trans. 87, 10–16 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Wen, G., Hao, W., Feng, W., Gao, K.: Optimized backstepping tracking control using reinforcement learning for quadrotor unmanned aerial vehicle system. IEEE Trans Syst, Man, Cyber: Syst 52(8), 5004–5015 (2021)

    Article  Google Scholar 

  • Wu, X., Xiao, B., Qu, Y.: Modeling and sliding mode-based attitude tracking control of a quadrotor UAV with time-varying mass. ISA Transactions, 1–8 (2019)

  • Wu, H., Hu, J., Xie, Y.: Characteristic model-based all-coefficient adaptive control method and its applications. IEEE Trans Syst, Man, Cyber, Part C (Appl Rev) 37(2), 213–221 (2007)

    Article  Google Scholar 

  • Wu, H., Ye, H., Xue, W., Yang, X.: Improved reinforcement learning using stability augmentation with application to quadrotor attitude control. IEEE Access 10, 67590–67604 (2022)

    Article  Google Scholar 

  • Xiao, B., Yin, S.: A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles. IEEE Trans. Industr. Inf. 13(6), 2922–2932 (2017)

    Article  Google Scholar 

  • Xiong, J.-J., Zhang, G.: Discrete-time sliding mode control for a quadrotor UAV. Optik 127(8), 3718–3722 (2016)

    Article  ADS  Google Scholar 

  • Xiong, X., Kamal, S., Jin, S.: Adaptive gains to super-twisting technique for sliding mode design. Asian J Cont 23(1), 362–373 (2021)

    Article  MathSciNet  Google Scholar 

  • Xu, G., Xia, Y., Zhai, D.-H., Ma, D.: Adaptive prescribed performance terminal sliding mode attitude control for quadrotor under input saturation. IET Control The Appli 14(17), 2473–2480 (2020)

    Article  MathSciNet  Google Scholar 

  • Xu, L., Shao, X., Zhang, W.: Usde-based continuous sliding mode control for quadrotor attitude regulation: Method and application. IEEE Access 9, 64153–64164 (2021)

    Article  Google Scholar 

  • Yang, Z.-J.: Adaptive robust output feedback control for attitude tracking of quadrotor unmanned aerial vehicles. Int. J. Adapt. Control Signal Process. 35(10), 2075–2093 (2021)

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Yan, Y.: Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerosp. Sci. Technol. 54, 208–217 (2016)

    Article  Google Scholar 

  • Yang, H., Cheng, L., Xia, Y., Yuan, Y.: Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind. IEEE Trans. Control Syst. Technol. 26(4), 1400–1405 (2017)

    Article  Google Scholar 

  • Yang, J., Na, J., Gao, G.: Robust model reference adaptive control for transient performance enhancement. Int. J. Robust Nonlinear Control 30(15), 6207–6228 (2020)

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Hou, Z., Chen, H., Lu, P.: DRL-based path planner and its application in real quadrotor with LIDAR. J Intel Robotic Syst 107(3), 38 (2023)

    Article  Google Scholar 

  • Yogi, S.C., Tripathi, V.K., Behera, L.: Adaptive integral sliding mode control using fully connected recurrent neural network for position and attitude control of quadrotor. IEEE Trans Neural Networks Learn Syst 32(12), 5595–5609 (2021)

    Article  MathSciNet  Google Scholar 

  • Yu, Y., Yang, S., Wang, M., Li, C., Li, Z.: High performance full attitude control of a quadrotor on SO(3). In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1698–1703 (2015). IEEE

  • Yu, J.-T.: A unified SO(3) approach to the attitude control design for quadrotors. IEEE Access 9, 64871–64879 (2021)

    Article  Google Scholar 

  • Zailani, M.A.H., Sabudin, R.Z.A.R., Rahman, R.A., Saiboon, I.M., Ismail, A., Mahdy, Z.A.: Drone for medical products transportation in maternal healthcare: A systematic review and framework for future research. Medicine 99(36), (2020)

  • Zexin, W., Jiang, Z., Zhihao, C., Yingxun, W., Ningjun, L.: Onboard actuator model-based incremental nonlinear dynamic inversion for quadrotor attitude control: Method and application. Chin. J. Aeronaut. 34(11), 216–227 (2021)

    Article  Google Scholar 

  • Zhang, X., Li, X., Wang, K., Lu, Y.: A survey of modelling and identification of quadrotor robot. In: Abstract and Applied Analysis, vol. 2014 (2014). Hindawi

  • Zhang, C., Na, J., Wu, J., Chen, Q., Huang, Y.: Proportional-integral approximation-free control of robotic systems with unknown dynamics. IEEE/ASME Trans. Mechatron. 26(4), 2226–2236 (2020)

    Article  Google Scholar 

  • Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Process. 129, 531–545 (2019)

    Article  Google Scholar 

  • Zhao, K., Zhang, J., Ma, D., Xia, Y.: Composite disturbance rejection attitude control for quadrotor with unknown disturbance. IEEE Trans. Industr. Electron. 67(8), 6894–6903 (2019)

    Article  Google Scholar 

  • Zheng, E.-H., Xiong, J.-J., Luo, J.-L.: Second order sliding mode control for a quadrotor UAV. ISA Trans. 53(4), 1350–1356 (2014)

    Article  PubMed  Google Scholar 

  • Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Industr. Electron. 58(10), 4898–4907 (2011)

    Article  Google Scholar 

Download references

Funding

The authors thank the National Council for Scientific and Technological Development (CNPq). This study was financed by the Human Resource Program of the Brazilian National Agency for Petroleum, Natural Gas, and Biofuels – PRH-ANP, supported by resources from oil companies considering contract clause no 50/2015 of R, D &I of the ANP.

Author information

Authors and Affiliations

Authors

Contributions

PJDOE: Conceptualization; Methodology; Formal analysis and investigation; Writing - original draft preparation. VMA: Formal analysis and investigation; Writing - review and editing. CBS: Formal analysis and investigation; Writing - review and editing. DSC: Formal analysis and investigation; Writing - review and editing. PMP: Data curation. SSCB: Funding acquisition. PLJDJ: Resources; Supervision.

Corresponding author

Correspondence to Paulo Jefferson Dias de Oliveira Evald.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Evald, P.J.D., Aoki, V.M., da Silva, C.B. et al. A review on quadrotor attitude control strategies. Int J Intell Robot Appl 8, 230–250 (2024). https://doi.org/10.1007/s41315-023-00308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-023-00308-9

Keywords

Navigation