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Abstract
A novel approach of data augmentation based on irregular superpixel decompo-
sition is proposed. This approach called SuperpixelGridMasks permits to extend
original image datasets that are required by training stages of machine learning-
related analysis architectures towards increasing their performances. Three variants
named SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix are pre-
sented. These grid-based methods produce a new style of image transformations
using the dropping and fusing of information. Extensive experiments using various
image classification models as well as precision health and surrounding real-world
datasets show that baseline performances can be significantly outperformed using
our methods. The comparative study also shows that our methods can overpass
the performances of other data augmentations. SuperpixelGridCut, SuperpixelGrid-
Mean, and SuperpixelGridMix codes are publicly available at https://github.com/
hammoudiproject/SuperpixelGridMasks.

Keywords Data analytics · Data augmentation · Predictive classification model ·
Deep learning · Health informatics · Precision health · Medical scans · Wellness ·
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1 Introduction

More than ever, machine learning is a field of great interest for the community of
health informatics. To the past, a huge amount of approaches have been developed to
perform semi-automatic and automatic data segmentation and classification towards
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supporting health diagnoses and people wellbeing. In this context, deep convolutional
neural networks (CNNs) appear as an ultimate resource towards operating recogni-
tion tasks at various scales. Indeed, recognition models are created by exploiting, e.g.,
biomedical images or people face images towards infection analysis in human tissues
[1], chest X-rays [2] (precision health), or towards verifying the correct mask wearing
of people during the COVID-19 pandemic [3, 4] (public health), respectively.

Such health-related topics are more and more refined and delicate to tackle.
The CNN architectures often include millions of parameters, requiring an important
number of images for performing their training, validation, and test stages towards
returning decisions with high precisions. In many cases, we face a lack of data due to
the topics that are very sensitive or completely new and that require hand-made and
fastidious data labeling tasks. An insufficient amount of relevant data can lead to seri-
ous over-fitting problems. Data augmentation appears as a complementary technique
for overcoming such problems.

Various types of data augmentation have been proposed in the literature. Frequent
methods can be divided into three categories: (i) the pixel-level transforms [5] (e.g.,
colorimetry-based); (ii) the spatial-level transforms [5] (e.g., geometry-based); and
(iii) the information dropping and fusing [6] (e.g., mask-based). For instance, pixel-
level transforms can be obtained by applying conventional image filters such as blur
noise, contrast, or compression-related ones. Spatial-level transforms can be to resize,
rotate, or flip images. The information dropping and fusing is the most recent cat-
egory which includes transforms such as image masking or mixing. Each category
contains transforms which can integrate parameters used with random values for
exploration or optimization reasons.

The nature of the considered topic, associated images, and applicative conditions
often help in the choice of the data augmentation methods that have to be experi-
mented. For instance, if the recognition has to be operated through a camera system,
then augmenting data by simulating a camera noise via a blur (category 1) could be
efficient; if the images to classify represent faces, an horizontal image flip (category
2) could be a good option and a vertical flip not; if the localization of objects in the
image of a scene plays an important role, augmenting data by cropping and masking
image parts (category 3) can permit to increase the perception field of the considered
network by occluding some image parts and forcing then the attention on potentially
relevant object parts and the robustness to occlusions.

Motivation — Information dropping techniques (category 3) can present the
advantage of forcing a considered network to explore image parts of interest through
this trade-off in between image occluding and preserving. Although often efficient
and flexible, it is worth mentioning that most of the masking data augmentations
methods, i.e., CutOut methods [7] usually exploit the dropping of squares or rectan-
gles. However, in a real-world topic, most of the processed image sets appear like
natural images. The presence of structures that are horizontally or vertically aligned
with respect to image orientations rarely occurs. Also, information fusion techniques
often aim to merge in one image the image parts of two or more images. It can result
from whole image encapsulation or mapping of image parts. The advantage can lie in
the generation of new images which embed discriminative characteristics of original
image pairs belonging to the same class. Once again, although effective and flexible,
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most of these mixing data augmentation methods, i.e., CutMix methods [8] usually
exploit quadrilateral structures.

In this paper, we propose SuperpixelGridMasks, namely SuperpixelGridCut,
SuperpixelGridMean, and SuperpixelGridMix data augmentation methods. By com-
parison to previously presented methods, they have several advantages, namely

• to respectively perform dropping and fusing information while limiting the inte-
gration in the considered network of periodic linear and right-angles related
noises due to the use of regular structures,

• to generate a 2D irregular structure which is purely built using natural image
information (e.g., pixel intensities, textures, or contours),

• to potentially produce structures which delimit real boundaries in between
objects and then perform dropping and fusing of delineated object parts instead
of dropping and fusing of inconsistent quadrilateral image parts.

2 RelatedWork

Most of the conventional data augmentation methods and variants from the categories
of pixel-level transforms and spatial-level transforms are regrouped in [5]. Data aug-
mentation methods acting on the information dropping and fusing are more and more
present. Those previously described such as CutOut, CutMix, and many variants are
presented in [7, 8] and [9–20], respectively. These latter, which are also mainly dis-
cussed in this survey [6], are all potentially efficient although they all exploit regular
and quadrilateral structures.

To the best of our knowledge, except for direct segmentation purposes, very few
approaches exploit superpixel entities towards performing data augmentation tasks.
In [5, 21], the authors proposed methods that augment data by transforming input
images into superpixel representations which are densely posterized. In [22], a super-
pixel representation is produced. Then, each image is split into a set of subimages
(i.e., individual superpixels) towards preparing patch-based processes. A method
Superpixel-Mix is presented in [23]. A superpixel representation is produced and a
swap is operated in between some superpixel regions of image pairs. This CutMix
is locally operated for augmenting data towards segmentation tasks. In sum, cur-
rent superpixel-based data augmentation either applies raw image posterization or
applies localized operations such as image-to-patch decomposition or parsimonious
superpixel mixing.

In our case, superpixel grid-based masks are proposed for the first time to per-
form global operations by sparsely applying dropping or fusion operations over a
superpixel grid with a uniform distribution. This principle is the core of the proposed
SuperpixelGridMasks approach which is described in detail in the next section.

3 Proposed Approach

The SuperpixelGridMasks approach is presented through three variants, namely
SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix. Their basis
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principles are presented in functions 1, 2, and 3, respectively. Common initial stage
consists of using a superpixel segmentation technique over an original image by pro-
viding the number q of requested superpixels. A variety of superpixel segmentation
techniques can be used to perform this task (see [24]). In our case, we selected a
refined version which maximizes the matching in between the generated superpixel
grid lines and intrinsic contour lines of the original images. By this way, subse-
quent dropping and fusing processes can operate with coherence on superpixels since
they directly share boundaries with object boundaries. The principle consists then of
parsing the obtained superpixel list.

Parameters related to our SuperpixelGridMasks are displayed in Fig. 1. A sam-
ple of superpixels is then processed (dropped or mixed) depending on a selected
occupancy threshold r , r ∈ [0, 1]. This rate of processed superpixel occupancy is
approximately equal to the rate of pixels to process over the augmented image when
superpixel sizes are close. If r is equal to 0.5, then it means that we target the pro-
cessing of half of superpixels. If r is equal to 0.3, then it means that we target
the processing of 30% of the list of superpixels. To perform a uniform superpixel
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Fig. 1 Parameters of SupepixelGridMasks approach: segmentation type t , random seed-based positioning
s, nb. of superpixels q, ratio of processed superpixels r
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processing, we proceed by randomly drawing a variable pi from a uniform distribu-
tion over [0, 1] for each superpixel i. The processing decision d is finally given by
(1).

d =
{
processed superpixel if pi ∈ [0, r]
unprocessed otherwise

(1)

if p is inferior to the selected r , then the considered superpixel will be processed.
Otherwise, the superpixel will be untouched. This random pulling of p permits to pro-
cess the superpixel in a sparse manner and with a uniform distribution. By this way,
the threshold r also permits to control the contiguity level of processed superpixels.

Algorithm 1 SuperpixelGridCut(I,q,r).

Algorithm 2 SuperpixelGridMean(I,q,r).
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Algorithm 3 SuperpixelGridMix(I,J,q,r).

From this step, function 1 and function 2 directly colorize the retained sample of
superpixels to process in black or with average color values, respectively while the
function 3 replaces the texture of the retained sample of superpixels to process by the
one of another original image of the dataset. In this latter process, the basis version
employs a second image that belongs to the same image class than the first image and
a correspondence in between pixel positions is preserved during the texture mapping.

The methods SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix
can be unified using the expression:

R = (1 − M) � I + M � J (2)

where � is the element-wise operation,
A = (SuperpixelA(1), · · · , SuperpixelA(q))t A ∈ {I, J, R},
M = (M(1), · · · , M(q))t with

M(i) =
{
0 if Superpixel(i) untouched
1 otherwise

(3)

In (2), function 1 uses J = 0 and function 2 employs the image J defined by:

SuperpixelJ (i) = mean(SuperpixelI (i)) (4)

Finally, in case of function 3, the image J is an image different than I , selected
from the dataset.

Besides, by applying the SuperpixelGridCut (or SuperpixelGridMean), a one-to-
one augmentation is obtained in the sense that each original image can produce one
augmented image. By this way, the size of a considered training image set can then
be multiplied by 2. By applying the SuperpixelGridMix to a training set of N images,
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each image can potentially be mixed with N − 1 images. The number of images in
the training set after augmentation can reach a number:

n = N + N × (N − 1) = N2 (5)

where N2 − N images are augmented ones. We remind that in this latter case,
each original image of the training set has its own generated superpixel grid. These
calculations assume the use of our augmentation methods in their conventional forms.

Further augmented images can be obtained by varying parameters shown in Fig. 1
such as instances of the random positioning for processed superpixels (e.g., using
other seeds s), the superpixel quantity q, the threshold of processed superpixel occu-
pancy r , or even the superpixel grid type t by applying other superpixel segmentation
methods.

4 Experimental Results and Evaluation

4.1 Datasets, Implementation Details, and Protocol

For our experimental needs, we exploited two image datasets of different natures that
are publicly available, namely the Chest X-Ray Images dataset and a PASCAL VOC
dataset. Chest X-Ray Images1 is a dataset which is exploited in biomedical studies
for pneumonia analysis. This latter includes two specific image classes, namely, nor-
mal and viral or bacterial pneumonia. Chest X-Ray image contains 5856 gray-scale
images having relatively high resolutions. It is worth mentioning that the visual clas-
sification of such a dataset is extremely difficult for a non-expert (precision health)
since one single image type is represented, namely chest X-ray images.

Besides, PASCAL VOC2 corresponds to a standardized image set for object class
recognition which contains four classes composed of vehicle or people images. This
dataset is composed of 679 color images having varied resolutions. Such a dataset
can be exploited for detecting human-related objects in a scene towards varied studies
and applications in public health such as, e.g., generation of traffic statistics, face
detection for verifying the correct mask wearing during pandemic, or human-vehicle
accident analysis.

In our experiments, datasets have been split into three subsets, namely, 70% for
training, 20% for validation, and 10% for testing. For simulating conditions for which
a classification problem is new and has a limited number of labeled images, we
retained image datasets of small and medium sizes towards testing our data aug-
mentations. Moreover, proposed augmentation methods are experimented over two
challenging classification tasks with datasets that could be envisaged in developments
of precision health and public health-related analysis systems, respectively.

1Dataset Chest X-Ray Images: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneum
onia
2A PASCAL VOC dataset: http://host.robots.ox.ac.uk/pascal/VOC/databases.html#VOC2005 1
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A VGG19 classification architecture has been exploited since this latter is often
used as a comparison baseline in image classification studies. In our case, the objec-
tive is not to outperform state-of-the-art results by comparing various CNNs perfor-
mances over a specific classification problem, but observing the basis performance
over a reference classification architecture and the impact of data augmentation
methods over different datasets.

By using the Chest X-Ray Images and PASCAL VOC datasets; SuperpixelGrid-
Cut, SuperpixelGridMean, and SuperpixelGridMix have then been experimented over
binary and multi-class image classification problems. The dataset baselines have been
calculated using VGG19 without data augmentation. For measuring the impact of our
methods, our VGG19 architecture uses an ImageNet pretraining for classifying the
Chest X-Ray Images dataset because of its high inter-class similarity. However, the
training stage has been done from scratch when using the selected PASCAL VOC
since some of its object classes are already well represented in ImageNet [25].

SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix have employed
the SLIC superpixel segmentation method [26] for generating the superpixel grids
with close superpixel sizes (i.e., superpixels which are uniform in size). The seg-
mentation SLIC (Simple Linear Iterative Clustering) is an adaptation of k-means
clustering which was initially used as preprocessing step for depth estimation. SLIC
exploits color and spatial proximity as well as the superpixel size and compactness
through a weighted distance measure. Notably, SLIC shows abilities of adherence
with image boundaries which can be particularly useful for fine object segmentation
in considered images.

The data augmentations SuperpixelGridCut and SuperpixelGridMean have been
applied to the original images of our training sets permitting them to multiply their
sizes by 2. Regarding the SuperpixelGridMix data augmentation, it is worth mention-
ing that it can directly be applied in between original images if they share the same
size but a strategy has to be adopted if the image size differs from one image to the
other. In our implementation, a segmented original image (i.e., having a generated
superpixel grid) uses a second original image for a SuperpixelGridMix if this latter
has a size that is superior or equal to the segmented one. By this way, border effects
are avoided during the processing. Also, we apply this method on the set of consecu-
tive image pairs from the training sets. In our experiments, the number of augmented
images is close to the size of the original training sets.

Hence, the SuperpixelGridMix is first segmenting a considered initial image. Once
segmented, the correspondence of superpixels is searched in the second image. Only
entirely overlapping superpixels are processed (potentially mixed according to the
defined probability). By this way, further alignment or transform is not necessary.

Figure 2 displays a one-pass scenario of our protocol for classification per-
formance searching. By this way, experimented states and actions are concisely
presented. Let us consider a starting state S0 for which the baseline classification
result obtained from a query dataset and a selected model are known. First action a0
consists of applying a query data augmentation method and training a model. This
action can conduct to overpass the baseline result (state S1); otherwise, the result is
inferior or equal to the baseline (state S2). Next action a1 aims to double-check this
latter result. This can conduct to overpass the baseline result (state S1); otherwise, if
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 : Starting state, baseline known
 : Baseline overpassed
 : Inferior or equal to the baseline result

 : Data augmentation & training 
 : Result double-checking 
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Fig. 2 State diagram which models an instance of our protocol for classification performance searching.
Considered experimental states and actions are represented

the result is still inferior to the baseline (state S2), then action a2 consists of tuning
the augmentation method and training. This can lead to obtain a result better than the
baseline (state S1); otherwise, the process is restarted (state S0), e.g., acting by using
another data augmentation method.

4.2 Analysis of Generated SuperpixelGridMasks

Training image sets of previously described datasets have been augmented using
SuperpixelGridCut, SuperpixelGridMean, and SuperpixelGridMix. The SLIC Super-
pixel segmentation method has been used. Low and high quantities of generated
superpixels as well as low and high contiguity level associated with the processed
superpixels have been experimented. A sample of generated SuperpixelGridMask
images is shown in Figs. 3, 4, 5, and 6 with varied respective datasets and parameters.

In particular, Figs. 3 and 4 show augmentations generated by applying the
proposed SuperpixelGrixCut and SuperpixelGridMean over X-ray images. These
augmentations are generated from individual images. Rows show our results with two
selected superpixel quantitites, q = 200 and q = 1000, respectively. The selected
ratio of processed superpixels is r = 0.4. SuperpixelGridCuts clearly display over-
lapped black masks. SuperpixelGridMeans show averaged superpixels which have
the appearance of homogeneous patches. SuperpixelGridMeans can be seen as acting
on the images like a slight blurring of object parts.

450 Journal of Healthcare Informatics Research  (2022) 6:442–460



Fig. 3 Augmentations generated by applying the proposed SuperpixelGrixCut and SuperpixelGridMean
over X-ray images. Results show the augmentation with a selected superpixel quantity q = 200. The
selected ratio of processed superpixels is r = 0.4. Left and right columns show SuperpixelGridMasks
ouputs with and without integration of the superpixel grid, respectively

Figures 5 and 6 show augmentations generated by applying the proposed Super-
pixelGridMix over X-ray images. This augmentation is generated by using image
pairs. Bottom rows show our results with two selected superpixel quantitites, q = 200
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Fig. 4 Augmentations generated by applying the proposed SuperpixelGrixCut and SuperpixelGridMean
over X-ray images. Results show the augmentation with a selected superpixel quantity q = 1000. The
selected ratio of processed superpixels is r = 0.4. Left and right columns show SuperpixelGridMasks
ouputs with and without integration of the superpixel grid, respectively

and q = 1000, respectively. The selected ratio of processed superpixels is r = 0.4.
SuperpixelGridMixs look like a composition of two considered images.

We can observe that the superpixel segmentation has permitted to segment
object parts (on the contrary of frequent quadrilateral segmentation operated
by previously discussed cutting or mixing techniques). Indeed, generated X-ray
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Fig. 5 Augmentations generated by applying the proposed SuperpixelGridMix over X-ray images. Results
show the augmentation with a selected superpixel quantity q = 200. The selected ratio of processed
superpixels is r = 0.4. Bottom row shows SuperpixelGridMix outputs with and without integration of the
superpixel grid, respectively

superpixel grids match with object part delimitation, see lung or rib contours. Hence,
SuperpixelGridMasks produce semantic data augmentations.

Besides, we emphasize that SuperpixelGridCut is the most penalizing data aug-
mentation method by comparison to SuperpixelGridMean or SuperpixelGridMix.
Indeed, SuperpixelGridCut occludes a set of superpixels for considered original
images with black masks whereas SuperpixelGridMean or SuperpixelGridMix, either
averaged superpixels or mixed superpixels, respectively.

In Fig. 7, we analyzed the behavior of our SuperpixelGridCut augmentation
method over original images of the Chest X-Ray Images dataset. To this end, we com-
pared this latter method (see a sample in Fig. 7b) with the CutOut method which also
proceeds by masking an image region by a black mask (see a sample in Fig. 7a). For a
fair comparison, the ratio of masking of both is approximately equal to 0.2. For com-
paring, samples of original training images and corresponding augmented images
have been passed through a data dimensionality reduction method. In particular, PCA
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Fig. 6 Augmentations generated by applying the proposed SuperpixelGridMix over X-ray images. Results
show the augmentation with a selected superpixel quantity q = 1000. The selected ratio of processed
superpixels is r = 0.4. Bottom row shows SuperpixelGridMix outputs with and without integration of the
superpixel grid, respectively

(principal component analysis) and t-SNE (t-distributed stochastic neighbor embed-
ding) [27] have been applied to generate a distribution of points towards visualization
and analysis of image samples (400 images used for each generated view).

In Fig. 7c, we can observe that two dissociated clusters of compact points are
formed; one corresponds to the not augmented images (normal and pneumonia),
the other one corresponds to the images augmented by using CutOut. This can be
explained by the large black square produced by the CutOut method, which com-
pletely obscures, for example, a large pixel area in the original image. Therefore,
CutOut-augmented images and original images each provide distant dots, as they are
clearly different in nature. For example, in Fig. 7a, if almost one lung (“i.e., one
object”) is cut out by CutOut, then this latter image is not seen by t-SNE as an original
image with two lungs (the corresponding dots are far away).

Figure 7d shows a single cluster of points with not augmented images regrouped at
its center and images augmented by SuperpixelGridCut homogeneously distributed
in its periphery. The original images represented by dots have been masked by small
amounts of black pixels (with SuperpixelGridCut) that sparsely cover the image. In
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Fig. 7 Subfigures a and b show images from the Chest X-Ray Images when augmented by CutOut and
SuperpixelGridCut with a similar masking ratio of approximately 0.2. Subfigures c and d show the dis-
tribution of points (images) generated via t-SNE by using 100 Normal and 100 Bacterial pneumonia
images without augmentation (Originals) compared to their generated CutOut and SuperpixelGridCut
augmentations, respectively
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this latter case, the masking by SuperpixelGridCut is less coarse and results in asso-
ciated dots (peripheral points) that are relatively close to the dots obtained from the
original images. For example, in Fig. 7b, although the ratio of black pixels masking
the original image is the same in CutOut and SuperpixelGridCut, the two lungs are
still visible in SuperpixelGridCut, as in the original image. In this latter case, dots
output by t-SNE are then relatively close to each other.

Consequently, although CutOut and SuperpixelGridCut representations mask in
black an approximately similar proportion for one considered image, their appli-
cations to a same set of original images conduct to the generation of augmented
datasets with different distribution characteristics. In particular, we can observe that
SuperpixelGridCut retains more class correspondences than CutOut.

4.3 Analysis of Classification Results

Table 1 presents classification results of our proposed data augmentation methods
and diverse ones obtained using VGG19 over the Chest X-Ray Images dataset using
varied parametrization. More precisely, the first row shows a baseline accuracy which
is equal to 78.68%. The augmentation methods are divided into two parts, the meth-
ods proceeding using a single image and the methods mixing two images. In the first
part, we remark that SuperpixelGridMean provides the best accuracy of 83.65%. The
random brightness reaches an accuracy of 82.37%. CutOut (2 parametrizations) and
SuperpixelGridCut obtain close accuracies of 80.60%, 80.28%, and 80.44%, respec-
tively. In the second part, CutMix provides to the best an accuracy of 85.09% and
SuperpixelGridMix reaches an accuracy of 88.14%. This latter obtains the best results
amongst the considered augmentation methods and+9.46% compared to the baseline
accuracy of 78.68%.

Table 1 Classification results of our proposed data augmentation methods and diverse ones obtained using
VGG19 over the Chest X-Ray Images1 (Kaggle) dataset using varied parametrization

Augmentation Parameters Accuracy (%)

Baseline − 78.68

Horizontal flip [5] − 79.32

Random brightness [5] Range=[0.5,2.0] 82.37

CutOut [7] r=0.2 80.60

CutOut [7] r=0.4 80.28

SuperpixelGridCut (ours) (q=1000, r = 0.2) 80.44 (+1.76)

SuperpixelGridMean (ours) (q=1000, r = 0.2) 83.65 (+4.97)

CutMix [8] r=0.2 85.09

CutMix [8] r=0.4 79.80

SuperpixelGridMix (ours) (q=1000, r = 0.4) 88.14 (+9.46)

Baseline vs. our method performances (noted “Ours”) are highlighted in bold
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Table 2 Classification results of our proposed data augmentation methods and diverse ones obtained using
VGG19 over a PASCAL VOC2 dataset using varied parametrization

Augmentation Parameters Accuracy (%)

Baseline − 57.81

Horizontal flip [5] − 62.50

Adjust brightness [5] Delta=0.1 57.81

CutOut [7] r=0.2 65.63

CutOut [7] r=0.4 65.63

SuperpixelGridCut (ours) (q=100, r = 0.2) 64.06 (+6.25)

SuperpixelGridMean (ours) (q=1000, r = 0.4) 75.00 (+17.19)

CutMix [8] r=0.2 67.19

CutMix [8] r=0.4 60.94

SuperpixelGridMix (ours) (q=100, r = 0.2) 75.00 (+17.19)

Baseline vs. our method performances (noted “Ours”) are highlighted in bold

Additionally, for highlighting the high generalization potential of SuperpixelGrid-
Masks, Table 2 presents classification results of our proposed data augmentation
methods and diverse ones obtained using VGG19 and varied parametrization over
distinctive image classes, namely a PASCAL VOC dataset. The first row shows a base-
line accuracy which is equal to 57.81%. The augmentation methods are divided into
two parts, the methods proceeding using a single image and the methods mixing two
images. In the first part, we remark that SuperpixelGridMean provides the best accu-
racy of 75.00%. CutOut and SuperpixelGridCut obtain close accuracies of 65.63%
and 64.06%, respectively. Horizontal flip provides an accuracy of 62.50% while the
adjust brightness equals the baseline accuracy. In the second part, CutMix reaches an
accuracy of 67.19% and SuperpixelGridMix provides an accuracy of 75.00%. Hence,
SuperpixelGridMix as well as SuperpixelGridMean obtain the best results amongst
the considered augmentation methods and +17.19% compared to the baseline accu-
racy of 57.81%. Figure 8 shows augmentation samples by using two different image
classes from the PASCAL VOC dataset.

We observe that our methods can overpass baseline classification results from
highly complex health-related data (X-rays having high interclass similarity) as well
as for surrounding real-world data having classes visually distinct. Our experiments
show that SuperpixelGridCut and CutOut can provide close performances. In this
study, SuperpixelGridMean outperforms CutOut and SuperpixelGridMix is the most
efficient method amongst all the considered data augmentation methods.

5 Conclusion

A new semantic data augmentation approach has been presented and its efficiency has
been shown over data having a high inter-class similarity (X-rays) and surrounding
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Fig. 8 Augmentations generated by applying the proposed SuperpixelGrixCut, SuperpixelGridMean, and
SuperpixelGridMix over pedestrian and urban scene images, respectively. Top rows and bottom rows show
our results with superpixel quantities, q = 100 and q = 200, respectively. The selected ratio of processed
superpixels is r = 0.4

real-world data. Proposed SuperpixelGridCut, SuperpixelGridMean, and Superpixel-
GridMix variants act limiting the inclusion of linear, right-angled, and regular noises
in the considered image analysis networks. A bunch of CutOut and CutMix-related
data augmentation methods that currently exploit linear structures could easily adopt
our approach in order to adapt their existing models towards targeting better per-
formances. The source codes of each proposed method have publicly been made
available online for permitting to anyone the easy augmentation of his/her image
datasets and further experiments towards better performances. A SuperpixelGrid-
Mask branch is introduced in the category of dropping and fusing data augmentation
methods with a high potential of generalization.

Code Availability The source codes permitting to generate the presented SuperpixelGridMasks
data augmentations will be publicly made available online at: https://github.com/hammoudiproject/
SuperpixelGridMasks.
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