Skip to main content
Log in

Brain Activity is Influenced by How High Dimensional Data are Represented: An EEG Study of Scatterplot Diagnostic (Scagnostics) Measures

  • Research Article
  • Published:
Journal of Healthcare Informatics Research Aims and scope Submit manuscript

Abstract

Visualization and visual analytic tools amplify one’s perception of data, facilitating deeper and faster insights that can improve decision making. For multidimensional data sets, one of the most common approaches of visualization methods is to map the data into lower dimensions. Scatterplot matrices (SPLOM) are often used to visualize bivariate relationships between combinations of variables in a multidimensional dataset. However, the number of scatterplots increases quadratically with respect to the number of variables. For high dimensional data, the corresponding enormous number of scatterplots makes data exploration overwhelmingly complex, thereby hindering the usefulness of SPLOM in human decision making processes. One approach to address this difficulty utilizes Graph-theoretic Scatterplot Diagnostic (Scagnostics) to automatically extract a subset of scatterplots with salient features and of manageable size with the hope that the data will be sufficient for improving human decisions. In this paper, we use Electroencephalogram (EEG) to observe brain activity while participants make decisions informed by scatterplots created using different visual measures. We focused on 4 categories of Scagnostics measures: Clumpy, Monotonic, Striated, and Stringy. Our findings demonstrate that by adjusting the level of difficulty in discriminating between data sets based on the Scagnostics measures, different parts of the brain are activated: easier visual discrimination choices involve brain activity mostly in visual sensory cortices located in the occipital lobe, while more difficult discrimination choices tend to recruit more parietal and frontal regions as they are known to be involved in resolving ambiguities. Our results imply that patterns of neural activity are predictive markers of which specific Scagnostics measures most assist human decision making based on visual stimuli such as ours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Albuquerque G, Eisemann M, Magnor M (2011) Perception-based visual quality measures. In: 2011 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 13–20

  2. Sedlmair M, Tatu A, Munzner T, Tory M (2012) A taxonomy of visual cluster separation factors. In: Computer graphics forum, vol 31. Wiley Online Library, pp 1335–1344

  3. Sips M, Neubert B, Lewis JP, Hanrahan P (2009) Selecting good views of high-dimensional data using class consistency. In: Computer graphics Forum, vol 28. Wiley Online Library, pp 831–838

  4. Lehmann DJ, Kemmler F, Zhyhalava T, Kirschke M, Theisel H (2015) Visualnostics: visual guidance pictograms for analyzing projections of high-dimensional data. In: Computer graphics forum, vol 34. Wiley Online Library, pp 291–300

  5. Wilkinson L, Anand A, Grossman R (2005) Graph-theoretic scagnostics. In: IEEE Symposium on information visualization. INFOVIS 2005. IEEE, pp 157–164

  6. Tatu A, Bak P, Bertini E, Keim D, Schneidewind J (2010) Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In: Proceedings of the international conference on advanced visual interfaces, pp 49–56

  7. Harrison L, Yang F, Franconeri S, Chang R (2014) Ranking visualizations of correlation using Weber’s law. IEEE Trans Visual Comput Graphics 20(12):1943–1952

    Article  Google Scholar 

  8. Rensink R, Baldridge G (2010) The visual perception of correlation in scatterplots. J Vis 10(7):975–975

    Article  Google Scholar 

  9. Etemadpour R, Olk B, Linsen L (2014) Eye-tracking investigation during visual analysis of projected multidimensional data with 2D scatterplots. In: 2014 international conference on information visualization theory and applications (IVAPP). IEEE, pp 233–246

  10. Koffka K (2013) Principles of Gestalt psychology, vol 44. Routledge

    Book  Google Scholar 

  11. Rensink RA (2017) The nature of correlation perception in scatterplots. Psychon Bull Rev 24(3):776–797

    Article  Google Scholar 

  12. Matute J, Telea AC, Linsen L (2017) Skeleton-based scagnostics. IEEE Trans Visual Comput Graphics 24(1):542–552

    Article  Google Scholar 

  13. Kay M, Heer J (2015) Beyond Weber’s law: a second look at ranking visualizations of correlation. IEEE Trans Visual Comput Graphics 22(1):469–478

    Article  Google Scholar 

  14. Sedlmair M, Aupetit M (2015) Data-driven evaluation of visual quality measures. In: Computer graphics forum, vol 34. Wiley Online Library, pp 201–210

  15. Etemadpour R, Motta R, de Souza Paiva JG, Minghim R, De Oliveira MCF, Linsen L (2014) Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Trans Visual Comput Graphics 21(1):81–94

    Article  Google Scholar 

  16. Deco G, Romo R (2008) The role of fluctuations in perception. Trends Neurosci 31(11):591–598

    Article  Google Scholar 

  17. Bode S, Sewell DK, Lilburn S, Forte JD, Smith PL, Stahl J (2012) Predicting perceptual decision biases from early brain activity. J Neurosci 32(36):12488–12498

    Article  Google Scholar 

  18. Bode S, Bogler C, Haynes JD (2013) Similar neural mechanisms for perceptual guesses and free decisions. Neuroimage 65:456–465

    Article  Google Scholar 

  19. Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsl 6(1):90–105

    Article  Google Scholar 

  20. Assent I, Krieger R, Müller E, Seidl T (2007) VISA: visual subspace clustering analysis. ACM SIGKDD Explorations Newsl 9(2):5–12

    Article  Google Scholar 

  21. Maimon, O Rokach L (2010) Introduction to knowledge discovery and data mining, data mining and knowledge discovery handbook. Springer, pp 1–15

  22. Dang TN, Wilkinson L (2014a) Scagexplorer: exploring scatterplots by their scagnostics. In: 2014 IEEE pacific visualization symposium. IEEE, pp 73–80

  23. Dang TN, Wilkinson L (2014) Transforming scagnostics to reveal hidden features. IEEE Trans Visual Comput Graphics 20(12):1624–1632

    Article  Google Scholar 

  24. Shao L, Mahajan A, Schreck T, Lehmann DJ (2017) Interactive regression lens for exploring scatter plots. In: Computer graphics forum, vol 36. Wiley Online Library, pp 157–166

  25. Wang Y, Wang Z, Liu T, Correll M, Cheng Z, Deussen O, Sedlmair M (2019) Improving the robustness of scagnostics. IEEE Trans Visual Comput Graphics 26(1):759–769

    Article  Google Scholar 

  26. Pandey AV, Krause J, Felix C, Boy J, Bertini E (2016) Towards understanding human similarity perception in the analysis of large sets of scatter plots. In: Proceedings of the 2016 CHI conference on human factors in computing systems, pp 3659–3669

  27. Aupetit M, Sedlmair M (2016) SepMe: 2002 new visual separation measures. In: 2016 IEEE pacific visualization symposium (PacificVis). IEEE, pp 1–8

  28. Shao L, Schleicher T, Behrisch M, Schreck T, Sipiran I, Keim DA (2016) Guiding the exploration of scatter plot data using motif-based interest measures. J Vis Lang Comput 36:1–12

    Article  Google Scholar 

  29. Lehmann DJ, Hundt S, Theisel H (2015) A study on quality metrics vs. human perception: can visual measures help us to filter visualizations of interest? It Inf Technol 57(1):11–21

  30. Wang M, Arteaga D, He BJ (2013) Brain mechanisms for simple perception and bistable perception. Proc Natl Acad Sci 110(35):E3350–E3359

    Article  Google Scholar 

  31. Shankar S, Kayser AS (2017) Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction. J Neurophysiol 117(6):2088–2103

    Article  Google Scholar 

  32. Bode S, He AH, Soon CS, Trampel R, Turner R, Haynes JD (2011) Tracking the unconscious generation of free decisions using uitra-high field fMRI. PLoS ONE 6(6):e21612

    Article  Google Scholar 

  33. Meijer GT, Mertens PE, Pennartz CM, Olcese U, Lansink CS (2019) The circuit architecture of cortical multisensory processing: distinct functions jointly operating within a common anatomical network. Prog Neurobiol 174:1–15

    Article  Google Scholar 

  34. Xing J, Andersen RA (2000) Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. J Cogn Neurosci 12(4):601–614

    Article  Google Scholar 

  35. Roitman JD, Brannon EM, Platt ML (2012) Representation of numerosity in posterior parietal cortex. Front Integr Neurosci 6:25

    Article  Google Scholar 

  36. Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7(11):483–488

    Article  Google Scholar 

  37. Lipton JS, Spelke ES (2003) Origins of number sense: large-number discrimination in human infants. Psychol Sci 14(5):396–401

    Article  Google Scholar 

  38. Sato T, Murthy A, Thompson KG, Schall JD (2001) Search efficiency but not response interference affects visual selection in frontal eye field. Neuron 30(2):583–591

    Article  Google Scholar 

  39. Zhang H, Eppes A, Beatty-Martínez A, Navarro-Torres C, Diaz MT (2018) Task difficulty modulates brain-behavior correlations in language production and cognitive control: behavioral and fMRI evidence from a phonological go/no-go picture-naming paradigm. Cogn Affect Behav Neurosci 18(5):964–981

    Article  Google Scholar 

  40. Wilkinson L, Anand A, Urbanek MS (2018) Package ‘scagnostics’

  41. Netzel R, Vuong J, Engelke U, O’Donoghue S, Weiskopf D, Heinrich J (2017) Comparative eye-tracking evaluation of scatterplots and parallel coordinates. Vis Inform 1(2):118–131

    Article  Google Scholar 

  42. Eilbert J, Peters Z, Eliott FM, Stassun KG, Kunda M (2018) Shapes in scatterplots: comparing human visual impressions and computational metrics. In: CogSci

  43. Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4):551–559

    Article  MathSciNet  Google Scholar 

  44. Skiena SS (1998) The algorithm design manual, vol 2. Springer

    Google Scholar 

  45. Wilkinson L, Anand A, Grossman R (2006) High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions. IEEE Trans Visual Comput Graphics 12(6):1363–1372

    Article  Google Scholar 

  46. Sedlmair M, Munzner T, Tory M (2013) Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans Visual Comput Graphics 19(12):2634–2643

    Article  Google Scholar 

  47. Sasane S, Schwabe L (2012) Decoding of EEG activity from object views: active detection vs. passive visual tasks. In: International conference on brain informatics. Springer, pp 277–287

  48. Kay KN, Naselaris T, Prenger RJ, Gallant JL (2008) Identifying natural images from human brain activity. Nature 452(7185):352–355

    Article  Google Scholar 

  49. Esch L, Dinh C, Larson E, Engemann D, Jas M, Khan S, Gramfort A, Hämäläinen MS (2019) MNE: software for acquiring, processing, and visualizing MEG/EEG data. From signals to dynamic cortical networks, Magnetoencephalography, pp 355–371

    Google Scholar 

  50. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430

    Article  Google Scholar 

  51. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611

    Article  MathSciNet  Google Scholar 

  52. Tatler BW, Hayhoe MM, Land MF, Ballard DH (2011) Eye guidance in natural vision: reinterpreting salience. J Vis 11(5):5–5

    Article  Google Scholar 

  53. Shomstein S, Behrmann M (2008) Object-based attention: strength of object representation and attentional guidance. Percept Psychophys 70(1):132–144

    Article  Google Scholar 

  54. Patel SH, Azzam PN (2005) Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci 2(4):147

    Article  Google Scholar 

  55. Maguire MJ, Magnon G, Ogiela DA, Egbert R, Sides L (2013) The N300 ERP component reveals developmental changes in object and action identification. Dev Cogn Neurosci 5:1–9

    Article  Google Scholar 

  56. Ellmore TM, Ng K, Reichert CP (2017) Early and late components of EEG delay activity correlate differently with scene working memory performance. PLoS ONE 12(10):e0186072

    Article  Google Scholar 

  57. Mazerolle EL, D’Arcy RC, Marchand Y, Bolster RB (2007) ERP assessment of functional status in the temporal lobe: examining spatiotemporal correlates of object recognition. Int J Psychophysiol 66(1):81–92

    Article  Google Scholar 

  58. Bledowski C, Prvulovic D, Hoechstetter K, Scherg M, Wibral M, Goebel R, Linden DE (2004) Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J Neurosci 24(42):9353–9360

    Article  Google Scholar 

  59. Liu T, Slotnick SD, Serences JT, Yantis S (2003) Cortical mechanisms of feature-based attentional control. Cereb Cortex 13(12):1334–1343

    Article  Google Scholar 

  60. Scolari M, Seidl-Rathkopf KN, Kastner S (2015) Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr Opin Behav Sci 1:32–39

    Article  Google Scholar 

  61. Wang L, Li C, Wu J (2017) The status of research into intention recognition. Improving the quality of life for dementia patients through progressive detection, treatment, and care. IGI Global, pp 201–221

  62. Read GL, Innis IJ (2017) Electroencephalography (EEG). Int Encyclopedia Commun Res Meth 1–18

  63. Radhakrishnan R, Addy PH, Sewell RA, Skosnik PD, Ranganathan M, D’Souza DC (2014) Cannabis, cannabinoids, and the association with psychosis. The effects of drug abuse on the human nervous system. Elsevier, pp 423–474

  64. Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14(5):877–883

    Article  Google Scholar 

  65. Picton TW, Stuss DT, Champagne SC, Nelson RF (1984) The effects of age on human event-related potentials. Psychophysiology 21(3):312–326

    Article  Google Scholar 

  66. Mueller V, Brehmer Y, Von Oertzen T, Li SC, Lindenberger U (2008) Electrophysiological correlates of selective attention: a lifespan comparison. BMC Neurosci 9(1):18

    Article  Google Scholar 

  67. Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111

    Article  Google Scholar 

  68. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647

    Article  Google Scholar 

  69. Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. NeuroReport 8(14):3029–3037

    Article  Google Scholar 

  70. Krigolson OE, Cheng D, Binsted G (2015) The role of visual processing in motor learning and control: insights from electroencephalography. Vision Res 110:277–285

    Article  Google Scholar 

  71. Kirino E, Belger A, Goldman-Rakic P, McCarthy G (2000) Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J Neurosci 20(17):6612–6618

    Article  Google Scholar 

  72. Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25(4):355–373

    Article  Google Scholar 

  73. Comerchero MD, Polich J (1999) P3a and P3b from typical auditory and visual stimuli. Clin Neurophysiol 110(1):24–30

    Article  Google Scholar 

  74. Nieuwenhuis S, De Geus EJ, Aston-Jones G (2011) The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 48(2):162–175

    Article  Google Scholar 

  75. Hagen GF, Gatherwright JR, Lopez BA, Polich J (2006) P3a from visual stimuli: task difficulty effects. Int J Psychophysiol 59(1):8–14

    Article  Google Scholar 

  76. Katayama J, Polich J (1998) Stimulus context determines P3a and P3b. Psychophysiology 35(1):23–33

    Article  Google Scholar 

  77. Noppeney U, Price CJ, Penny WD, Friston KJ (2006) Two distinct neural mechanisms for category-selective responses. Cereb Cortex 16(3):437–445

    Article  Google Scholar 

  78. Haxby JV, Gobbini MI, Montgomery K (2004) Spatial and temporal distribution of face and object representations in the human brain

  79. Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870

    Article  Google Scholar 

  80. Lüdtke J, Friedrich CK, De Filippis M, Kaup B (2008) Event-related potential correlates of negation in a sentence-picture verification paradigm. J Cogn Neurosci 20(8):1355–1370

    Article  Google Scholar 

  81. Potts GF, Patel SH, Azzam PN (2004) Impact of instructed relevance on the visual ERP. Int J Psychophysiol 52(2):197–209

    Article  Google Scholar 

  82. Bourisly AK, Shuaib A (2018) Neurophysiological effects of aging: a P200 ERP study. Transl Neurosci 9(1):61–66

    Article  Google Scholar 

  83. Potts GF (2004) An ERP index of task relevance evaluation of visual stimuli. Brain Cogn 56(1):5–13

    Article  MathSciNet  Google Scholar 

  84. Madden DJ, Parks EL, Tallman CW, Boylan MA, Hoagey DA, Cocjin SB, Johnson MA, Yh Chou GG, Potter Nk Chen et al (2017) Frontoparietal activation during visual conjunction search: effects of bottom-up guidance and adult age. Hum Brain Mapp 38(4):2128–2149

    Article  Google Scholar 

  85. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324

    Article  Google Scholar 

  86. Makin AD, Wright D, Rampone G, Palumbo L, Guest M, Sheehan R, Cleaver H, Bertamini M (2016) An electrophysiological index of perceptual goodness. Cereb Cortex 26(12):4416–4434

    Article  Google Scholar 

  87. Wright D, Makin AD, Bertamini M (2015) Right-lateralized alpha desynchronization during regularity discrimination: hemispheric specialization or directed spatial attention? Psychophysiology 52(5):638–647

    Article  Google Scholar 

  88. Bertamini M, Rampone G, Oulton J, Tatlidil S, Makin AD (2019) Sustained response to symmetry in extrastriate areas after stimulus offset: an EEG study. Sci Rep 9(1):1–11

    Article  Google Scholar 

  89. Jacobsen T, Klein S, Löw A (2018) The posterior sustained negativity revisited-an SPN reanalysis of Jacobsen and Höfel (2003). Symmetry 10(1):27

    Article  Google Scholar 

  90. Kahneman D (1973) Attention and effort, vol 1063. Citeseer

  91. Xu G, Wu Y, Li M (2020) The study of influence of sound on visual ERP-based brain computer interface. Sensors 20(4):1203

    Article  Google Scholar 

  92. Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41(2):103–146

    Article  Google Scholar 

  93. Saliasi E, Geerligs L, Lorist MM, Maurits NM (2013) The relationship between P3 amplitude and working memory performance differs in young and older adults. PLoS ONE 8(5):e63701

    Article  Google Scholar 

  94. Friederici AD, Hahne A, Saddy D (2002) Distinct neurophysiological patterns reflecting aspects of syntactic complexity and syntactic repair. J Psycholinguist Res 31(1):45–63

    Article  Google Scholar 

  95. Roldan SM (2017) Object recognition in mental representations: directions for exploring diagnostic features through visual mental imagery. Front Psychol 8:833

    Article  Google Scholar 

  96. Vance J, Stokes D (2017) Noise, uncertainty, and interest: predictive coding and cognitive penetration. Conscious Cogn 47:86–98

    Article  Google Scholar 

  97. Ransom M, Fazelpour S, Mole C (2017) Attention in the predictive mind. Conscious Cogn 47:99–112

    Article  Google Scholar 

  98. Yip HMK, Cheung LY, Wong YK, Wong ACN (2020) The effect of task on object processing revealed by EEG decoding. bioRxiv

  99. Voss JL, Federmeier KD (2011) FN400 potentials are functionally identical to N400 potentials and reflect semantic processing during recognition testing. Psychophysiology 48(4):532–546

    Article  Google Scholar 

  100. Paller KA, Lucas HD, Voss JL (2012) Assuming too much from ‘familiar’ brain potentials. Trends Cogn Sci 16(6):313–315

    Article  Google Scholar 

  101. Leynes PA, Batterman A, Abrimian A (2019) Expectations alter recognition and event-related potentials (ERPS). Brain Cogn 135:103573

  102. Yang J, Long C (2020) Common and distinctive cognitive processes between categorization and category-based induction: evidence from event-related potentials. Brain Res 1749:147134

    Article  Google Scholar 

  103. Kutas M, Federmeier KD (2009) N400. Scholarpedia 4(10):7790

  104. Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. Exp Brain Res 142(1):139–150

    Article  Google Scholar 

  105. Albuquerque G, Eisemann M, Lehmann DJ, Theisel H, Magnor M (2010 Improving the visual analysis of high-dimensional datasets using quality measures. In: 2010 IEEE symposium on visual analytics science and technology. IEEE, pp 19–26

Download references

Acknowledgements

The authors would like to thank Prof. Chris Weaver at University of Oklahoma for his initial helpful guidance and encouragement in designing this study about Scagnostic measures. We would like to also thank Dr. Chelsea P Reichert for her support and guides in analyzing the brain data. Finally, we thank students Arezoo Bybordi, Marino Echavarria, Vincent Filardi, Kenneth Ng, Chhewang Sherpa and Yu Xuan Huang at The City College of New York who helped us in implementation, conducting and facilitating the user study.

Funding

This work was supported by a grant from the PSC CUNY 61256-00 49.

Author information

Authors and Affiliations

Authors

Contributions

Ronak Etemadpour as the first author contributed in conceptualization, designing the study, gaining fund for the project, conducting the study, performing data analysis, data curation, administrating the project, data interpretation and drafting the manuscript. SS performed the data analysis, coding and programming, and partially drafting the manuscript. AS supervised experimental design, training sessions of neuroimaging protocols, quality assurance, and critical review and drafting of manuscript.

Corresponding author

Correspondence to A. Duke Shereen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadpour, R., Shintree, S. & Shereen, A.D. Brain Activity is Influenced by How High Dimensional Data are Represented: An EEG Study of Scatterplot Diagnostic (Scagnostics) Measures. J Healthc Inform Res 8, 19–49 (2024). https://doi.org/10.1007/s41666-023-00145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41666-023-00145-2

Keywords

Navigation