Skip to main content
Log in

Reliability evaluation of distribution network based on fuzzy spiking neural P system with self-synapse

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

This paper proposes a fuzzy spiking neural P system with self-synapse (in short, FSNPSS) which is applied to the reliability assessment of distribution networks. The method maps the operation or fault states of the distribution network component and the load to the excited or resting states of neurons, and converts electrical relationships among components, loads and targeted systems into a synaptic connection relationship. Then, the occurrence probabilities of the states are transmitted by spikes, and reliability indices are computed by accumulating pulse values of the spikes. Finally, the feasibility and effectiveness of solving reliability assessment of distribution networks by membrane systems are verified in case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heydt, G. T., & Graf, T. J. (2010). Distribution system reliability evaluation using enhanced samples in a monte carlo approach. IEEE Transactions on Power Systems, 25(4), 2006–2008.

    Article  Google Scholar 

  2. Hou, K., Jia, H., Xu, X., Liu, Z., & Jiang, Y. (2015). A continuous time markov chain based sequential analytical approach for composite power system reliability assessment. IEEE Transactions on Power Systems, 31(1), 738–748.

    Article  Google Scholar 

  3. Yu, D. C., Nguyen, T. C., & Haddawy, P. (1999). Bayesian network model for reliability assessment of power systems. IEEE Transactions on Power Systems, 14(2), 426–432.

    Article  Google Scholar 

  4. Zhu, Y., Huo, L., Zhang, L., & Yan, W. (2008). Bayesian network based time-sequence simulation for power system reliability assessment. In: Mexican International Conference on Artificial Intelligence.

  5. Liai, G., Yongjie, Z., Kun, S., Chenwei, H., & Limin, H. (2016). Bayesian networks application to reliability evaluation of distribution systems containing micro-grids or looped network. International Journal of Grid and Distributed Computing, 1(1), 8.

    Google Scholar 

  6. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  Google Scholar 

  7. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural p systems. Fundamenta informaticae, 71(2, 3), 279–308.

    MathSciNet  MATH  Google Scholar 

  8. Rozenberg, G., & Salomaa, A. (2010). The oxford handbook of membrane computing. Oxford: Oxford University Press.

    MATH  Google Scholar 

  9. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-Patón, A. (2019). Spiking neural p systems with learning functions. IEEE transactions on nanobioscience, 18(2), 176–190.

    Article  Google Scholar 

  10. Gutiérrez-Naranjo, M. A., & Pérez-Jiménez, M. J. (2008). Hebbian learning from spiking neural p systems view. International workshop on membrane computing (pp. 217–230). Berlin: Springer.

    Google Scholar 

  11. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural p systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    Article  Google Scholar 

  12. Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural p systems with scheduled synapses. IEEE Transactions on Nanobioscience, 16(8), 792–801.

    Article  Google Scholar 

  13. Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buño, K. C., Adorna, H. N., Hernandez, N. H. S., et al. (2019). Matrix representation and simulation algorithm of spiking neural p systems with structural plasticity. Journal of Membrane Computing, 1(3), 145–160.

    Article  MathSciNet  Google Scholar 

  14. de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural p systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.

    Article  MathSciNet  Google Scholar 

  15. Cabarle, F. G. C., de la Cruz, R. T. A., Zhang, X., Jiang, M., Liu, X., & Zeng, X. (2018). On string languages generated by spiking neural p systems with structural plasticity. IEEE Transactions on Nanobioscience, 17(4), 560–566.

    Article  Google Scholar 

  16. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2016). Sequential spiking neural p systems with structural plasticity based on max/min spike number. Neural Computing and Applications, 27(5), 1337–1347.

    Article  Google Scholar 

  17. Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural p systems with neuron division and budding. Science China Information Sciences, 54(8), 1596.

    Article  MathSciNet  Google Scholar 

  18. Pan, L., & Păun, G. (2009). Spiking neural p systems with anti-spikes. International Journal of Computers Communications and Control, 4(3), 273–282.

    Article  Google Scholar 

  19. Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural p systems with astrocytes. Neural Computation, 24(3), 805–825.

    Article  MathSciNet  Google Scholar 

  20. Liu, W., Wang, T., Zang, T., Huang, Z., Wang, J., Huang, T., et al. (2020). A fault diagnosis method for power transmission networks based on spiking neural p systems with self-updating rules considering biological apoptosis mechanism. Complexity,. https://doi.org/10.1155/2020/2462647.

    Article  Google Scholar 

  21. Wang, T., Wei, X., Huang, T., Wang, J., Peng, H., Pérez-Jiménez, M. J., et al. (2019). Modeling fault propagation paths in power systems: A new framework based on event snp systems with neurotransmitter concentration. IEEE Access, 7, 12798–12808.

    Article  Google Scholar 

  22. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-life applications with membrane computing (Vol. 25). Berlin: Springer.

    Book  Google Scholar 

  23. Rong, H., Wu, T., Pan, L., & Zhang, G. (2018). Enjoying natural computing. Spiking neural p systems: theoretical results and applications (pp. 256–268). Berlin: Springer.

    MATH  Google Scholar 

  24. Hong, P., Wang, J., Pérez-Jiménez, M. J., Hao, W., Jie, S., & Tao, W. (2013). Fuzzy reasoning spiking neural p system for fault diagnosis. Information Sciences, 235(6), 106–116.

    MathSciNet  MATH  Google Scholar 

  25. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M. J., & Wang, T. (2013). Weighted fuzzy spiking neural p systems. IEEE Transactions on Fuzzy Systems, 21(2), 209–220.

    Article  Google Scholar 

  26. Min, T. U., Wang, J., Hong, P., & Peng, S. (2014). Application of adaptive fuzzy spiking neural p systems in fault diagnosis of power systems. Chinese Journal of Electronics, 23(1), 87–92.

    Google Scholar 

  27. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2014). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural p systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  28. Wang, J., Peng, H., Tu, M., Shi, P., et al. (2016). A fault diagnosis method of power systems based on an improved adaptive fuzzy spiking neural p systems and pso algorithms. Chinese Journal of Electronics, 25(2), 320–327.

    Article  Google Scholar 

  29. Xiong, G., Shi, D., & Lin, Z. (2013). Duan X (2013) A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural p systems. Mathematical Problems in Engineering, 1, 211–244.

    Google Scholar 

  30. Yin, L., Zheng, R., Ke, W., He, Q., Zhang, Y., Li, J., et al. (2018). Autapses enhance bursting and coincidence detection in neocortical pyramidal cells. Nature communications, 9(1), 4890.

    Article  Google Scholar 

  31. Bekkers, J. M. (2009). Synaptic transmission: excitatory autapses find a function? Current Biology, 19(7), R296–R298.

    Article  Google Scholar 

  32. Wang, T., Zhang, G., & Pérez-Jiménez, M. J. (2015a). Fuzzy membrane computing: theory and applications. International Journal of Computers Communications & Control, 10(6), 144–175.

    Article  Google Scholar 

  33. Allan, R. N., Billinton, R., Sjarief, I., Goel, L., & So, K. S. (1991). A reliability test system for educational purposes-basic distribution system data and results. IEEE Transactions on Power Systems, 6(2), 813–820.

    Article  Google Scholar 

  34. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural p systems with weighted synapses. Neural Processing Letters, 35(1), 13–27.

    Article  Google Scholar 

  35. Wang, T., Zhang, G., Pérez-Jiménez, M. J., & Cheng, J. (2015b). Weighted fuzzy reasoning spiking neural p systems: application to fault diagnosis in traction power supply systems of high-speed railways. Journal of Computational and Theoretical Nanoscience, 12(7), 1103–1114.

    Article  Google Scholar 

  36. Li, W. (2014). Risk assessment of power systems: models, methods, and applications. Hoboken: John Wiley and Sons.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Sichuan Provincial Department of Science and Technology (No. 2019122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuLei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wang, T., Wang, J. et al. Reliability evaluation of distribution network based on fuzzy spiking neural P system with self-synapse. J Membr Comput 3, 51–62 (2021). https://doi.org/10.1007/s41965-020-00035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00035-1

Keywords

Navigation