Skip to main content
Log in

Mutual exclusion and reversibility in reaction systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

The evolution of a reaction system is usually driven by a fixed set of unconstrained rules. In this paper, we present a different approach by imposing some constraints over the rules. Thus, we define restricted reaction systems which are working with mutually exclusive rules, namely rules that are not allowed to be applied together in the same computational step. We investigate the relationship between the reaction systems and the new restricted reaction systems. Additionally, we analyze the notion of reversibility in both reaction systems and restricted reaction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alhazov, A., Aman, B., Freund, R., & Ivanov, S. (2016). Simulating R systems by P systems. Lecture Notes in Computer Science, 10105, 51–66.

    Article  MathSciNet  Google Scholar 

  2. Aman, B., & Ciobanu, G. (2017). Controlled reversibility in reaction systems. Lecture Notes in Computer Science, 10725, 40–53.

    Article  MathSciNet  Google Scholar 

  3. Atkins, P. (2019). Atkins’ Physical Chemistry (9th ed.). Oxford: Oxford University Press.

    Google Scholar 

  4. Azimi, S., Iancu, B., & Petre, I. (2014). Reaction system models for the heat shock response. Fundamenta Informaticae, 131, 1–14.

    Article  MathSciNet  Google Scholar 

  5. Barbuti, R., Gori, R., Levi, F., & Milazzo, P. (2018). Generalized contexts for reaction systems: Definition and study of dynamic causalities. Acta Informatica, 55(3), 227–267.

    Article  MathSciNet  Google Scholar 

  6. Bottoni, P., Labella, A., & Rozenberg, G. (2019). Reaction systems with influence on environment. Journal of Membrane Computing, 1(1), 3–19.

    Article  MathSciNet  Google Scholar 

  7. Bottoni, P., Labella, A., & Rozenberg, G. (2020). Networks of reaction systems. International Journal of Foundations of Computer Science, 31(1), 53–71.

    Article  MathSciNet  Google Scholar 

  8. Brijder, R., Ehrenfeucht, A., Main, M. G., & Rozenberg, G. (2011). A tour of reaction systems. International Journal of Foundations of Computer Science, 22(7), 1499–1517.

    Article  MathSciNet  Google Scholar 

  9. Brijder, R., Ehrenfeucht, A., & Rozenberg, G. (2011). Reaction systems with duration. Lecture Notes in Computer Science, 6610, 191–202.

    Article  Google Scholar 

  10. Danos, V., & Krivine, J. (2004). Reversible communicating systems. Lecture Notes in Computer Science, 3170, 292–307.

    Article  Google Scholar 

  11. Ehrenfeucht, A., Kleijn, J., Koutny, M., & Rozenberg, G. (2017). Evolving reaction systems. Theoretical Computer Science, 682, 79–99.

    Article  MathSciNet  Google Scholar 

  12. Ehrenfeucht, A., Petre, I., & Rozenberg, G. (2017). Reaction systems: A model of computation inspired by the functioning of the living cell. In S. Konstantinidis, et al. (Eds.), The role of theory in computer science: Essays dedicated to Janusz Brzozowski (pp. 1–32). Singapore: World Scientific.

    Google Scholar 

  13. Ehrenfeucht, A., & Rozenberg, G. (2007). Reaction systems. Fundamenta Informaticae, 75(1), 263–280.

    MathSciNet  MATH  Google Scholar 

  14. Ehrenfeucht, A., & Rozenberg, G. (2009). Introducing time in reaction systems. Theoretical Computer Science, 410, 310–322.

    Article  MathSciNet  Google Scholar 

  15. Ehrenfeucht, A., & Rozenberg, G. (2014). Zoom structures and reaction systems yield exploration systems. International Journal of Foundations of Computer Science, 25(3), 275–306.

    Article  MathSciNet  Google Scholar 

  16. Kleijn, J., Koutny, M., & Rozenberg, G. (2020). Plug-in context providers for reaction systems. Theoretical Computer Science, 834, 26–42.

    Article  MathSciNet  Google Scholar 

  17. Lanese, I., Mezzina, C. A., & Stefani, J. B. (2010). Reversing higher-order \(\pi \). Lecture Notes in Computer Science, 6269, 478–493.

    Article  MathSciNet  Google Scholar 

  18. Păun, Gh. (1998). Computing with membranes. Journal of Computer and System Sciences, 61, 108–143.

    Article  MathSciNet  Google Scholar 

  19. Păun, Gh, & Pérez-Jiménez, M. J. (2012). Towards bridging two cell-inspired models: P systems and R systems. Theoretical Computer Science, 429, 258–264.

    Article  MathSciNet  Google Scholar 

  20. Petre, I., Mizera, A., Hyder, C. L., Meinander, A., Mikhailov, A., Morimoto, R. I., et al. (2011). A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing, 10(1), 595–612.

    Article  MathSciNet  Google Scholar 

  21. Phillips, I., Ulidowski, I., & Yuen, S. (2013). A reversible process calculus and the modelling of the ERK signalling pathway. Lecture Notes in Computer Science, 7581, 218–232.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Ciobanu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman, B., Ciobanu, G. Mutual exclusion and reversibility in reaction systems. J Membr Comput 2, 171–178 (2020). https://doi.org/10.1007/s41965-020-00043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00043-1

Keywords

Navigation