Skip to main content
Log in

Simulating counting oracles with cooperation

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Many variants of P systems with active membranes are able to solve traditionally intractable problems. Sometimes they also characterize well known complexity classes, depending upon the computational features they use. In this paper we continue the investigation of the importance of (minimal) cooperative rules to increase the computational power of P systems. In particular, we prove that monodirectional shallow chargeless P systems with active membranes and minimal cooperation working in polynomial time precisely characterise \(\mathbf{P }^{\#{\mathbf{P }}}_{\parallel }\), the complexity class of problems solved in polynomial time by deterministic Turing machines with a polynomial number of parallel queries to an oracle for a counting problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fortnow, L. (1997). Counting complexity. In L. A. Hemaspaandra & A. L. Selman (Eds.), Complexity theory retrospective II (pp. 81–107). New York: Springer.

    Chapter  Google Scholar 

  2. Ionescu, M., Păun, Gh., Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae 71(2–3), 279–308. https://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-08.

  3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C. (2014). Simulating elementary active membranes, with an application to the P conjecture. In Gheorghe, M., Rozenberg, G., Sosík, P., Zandron, C. (Eds.). Membrane computing, 15th international conference, CMC 2014. Lecture notes in computer science, vol. 8961, pp. 284–299. Springer. https://doi.org/10.1007/978-3-319-14370-5_18.

  4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae, 138(1–2), 97–111. https://doi.org/10.3233/FI-2015-1201.

    Article  MathSciNet  MATH  Google Scholar 

  5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2016). Monodirectional P systems. Natural Computing, 15(4), 551–564. https://doi.org/10.1007/s11047-016-9565-2.

    Article  MathSciNet  MATH  Google Scholar 

  6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). Characterising the complexity of tissue P systems with fission rules. Journal of Computer and System Sciences, 90, 115–128. https://doi.org/10.1016/j.jcss.2017.06.008.

    Article  MathSciNet  MATH  Google Scholar 

  7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2017). The counting power of P systems with antimatter. Theoretical Computer Science, 701, 161–173. https://doi.org/10.1016/j.tcs.2017.03.045.

    Article  MathSciNet  MATH  Google Scholar 

  8. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2020). Subroutines in P systems and closure properties of their complexity classes. Theoretical Computer Science, 805, 193–205. https://doi.org/10.1016/j.tcs.2018.06.012.

    Article  MathSciNet  MATH  Google Scholar 

  9. Martín-Vide, C., Păun, Gh., Pazos, J., & Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326. https://doi.org/10.1016/S0304-3975(02)00659-X.

    Article  MathSciNet  MATH  Google Scholar 

  10. Murphy, N., & Woods, D. (2011). The computational power of membrane systems under tight uniformity conditions. Natural Computing, 10(1), 613–632. https://doi.org/10.1007/s11047-010-9244-7.

    Article  MathSciNet  MATH  Google Scholar 

  11. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. Journal of Membrane Computing, 1(2), 85–92. https://doi.org/10.1007/s41965-018-00004-9.

    Article  MathSciNet  MATH  Google Scholar 

  12. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). A path to computational efficiency through membrane computing. Theoretical Computer Science, 777, 443–453. https://doi.org/10.1016/j.tcs.2018.12.024.

    Article  MathSciNet  MATH  Google Scholar 

  13. Papadimitriou, C. H. (1993). Computational complexity. Boston: Addison-Wesley.

    MATH  Google Scholar 

  14. Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. https://doi.org/10.1006/jcss.1999.1693.

    Article  MathSciNet  MATH  Google Scholar 

  15. Păun, Gh. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6(1), 75–90.

    MathSciNet  MATH  Google Scholar 

  16. Păun, Gh., & Rozenberg, G. (2002). A guide to membrane computing. Theoretical Computer Science, 287(1), 73–100. https://doi.org/10.1016/S0304-3975(02)00136-6.

    Article  MathSciNet  MATH  Google Scholar 

  17. Păun, Gh., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford handbook of membrane computing. Oxford: Oxford University Press.

    MATH  Google Scholar 

  18. Păun, Gh. (2002). Membrane computing: An introduction. New York: Springer.

    Book  Google Scholar 

  19. Sosík, P. (2019). P systems attacking hard problems beyond NP: A survey. Journal of Membrane Computing, 1, 198–208. https://doi.org/10.1007/s41965-019-00017-y.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing and complexity theory: A characterization of PSPACE. Journal of Computer and System Sciences, 73(1), 137–152. https://doi.org/10.1016/j.jcss.2006.10.001.

    Article  MathSciNet  MATH  Google Scholar 

  21. The P systems webpage. http://ppage.psystems.eu/.

  22. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2016). Polarizationless P systems with active membranes: Computational complexity aspects. Journal of Automata, Languages and Combinatorics, 21(1—-2), 107–123. https://doi.org/10.25596/jalc-2016-107.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zandron, C., Ferretti, C., & Mauri, G. (2001). Solving NP-complete problems using P systems with active membranes. In Antoniou, I., Calude, C. S., & Dinneen, M. J. (Eds.). Unconventional models of Computation, UMC’2K, proceedings of the second international conference (pp. 289–301). Springer. https://doi.org/10.1007/978-1-4471-0313-4_21.

Download references

Acknowledgements

Antonio E. Porreca was funded by his salary of French public servant, affiliated to Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Leporati.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leporati, A., Manzoni, L., Mauri, G. et al. Simulating counting oracles with cooperation. J Membr Comput 2, 303–310 (2020). https://doi.org/10.1007/s41965-020-00052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00052-0

Keywords

Navigation