Skip to main content
Log in

Reversible computation in nature inspired rule-based systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Since reversibility is an inherent property of many natural phenomena, it makes sense to investigate reversibility in natural computing. More exactly, to study reversible computation in rule-based systems inspired by living cells. Thus, we consider systems working with rules over multisets of objects which are evolving in a maximal parallel manner. After defining what reversibility means in these rule-based systems, we explore their properties that are fully reversible. Some specific properties for reversible computation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrigoroaiei, O., & Ciobanu, G. (2009). Dual P systems. Lecture Notes in Computer Science, 5391, 95–107.

    Article  Google Scholar 

  2. Aman, B., & Ciobanu, G. (2017). Reversibility in parallel rewriting systems. Journal of Universal Computer Science, 23(7), 692–703.

    MathSciNet  Google Scholar 

  3. Aman, B., & Ciobanu, G. (2018). Controlled reversibility in reaction systems. Lecture Notes in Computer Science, 10725, 40–53.

    Article  MathSciNet  Google Scholar 

  4. Aman, B., & Ciobanu, G. (2019). Synchronization of rules in membrane computing. Journal of Membrane Computing, 1(4), 233–240.

    Article  MathSciNet  Google Scholar 

  5. Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17, 525–532.

    Article  MathSciNet  Google Scholar 

  6. Bennett, C. H. (2003). Notes on Landauer’s principle, reversible computation and Maxwell’s Demon. Studies in History and Philosophy of Modern Physics, 34, 501–510.

    Article  MathSciNet  Google Scholar 

  7. Bottoni, P., Labella, A., & Rozenberg, G. (2019). Reaction systems with influence on environment. Journal of Membrane Computing, 1(1), 3–19.

    Article  MathSciNet  Google Scholar 

  8. Cardelli, L. (2004). BioAmbients: an abstraction for biological compartments. Theoretical Computer Science, 325, 141–167.

    Article  MathSciNet  Google Scholar 

  9. Cardelli, L., & Laneve, C. (2011). Reversibility in massive concurrent systems. Scientific Annals of Computer Science, 21, 175–198.

    MathSciNet  MATH  Google Scholar 

  10. Ciobanu, G., Marcus, S., & Păun, Gh. (2009). New strategies of using the rules of a P system in a maximal way: power and complexity. Romanian Journal of Information Science and Technology, 12, 157–173.

    Google Scholar 

  11. Ciobanu, G., Păun, Gh, & Pérez-Jiménez, M. J. (2006). Applications of membrane computing. Berlin: Springer.

    Google Scholar 

  12. Ciobanu, G., & Sburlan, D. (2013). Scenario based P systems. International Journal of Unconventional Computing, 9, 351–366.

    Google Scholar 

  13. Danos, V., Feret, J., Fontana, W., Harmer, R., & Krivine, J. (2007). Rule-based modelling of cellular signalling. Lecture Notes in Computer Science, 4703, 17–41.

    Article  Google Scholar 

  14. Danos, V., & Krivine, J. (2004). Reversible communicating systems. Lecture Notes in Computer Science, 3170, 292–307.

    Article  Google Scholar 

  15. Ehrenfeucht, A., & Rozenberg, G. (2007). Reaction systems. Fundamenta Informaticae, 75, 263–280.

    MathSciNet  MATH  Google Scholar 

  16. Feynman, R. P. (1996). Feynman lectures on computation. New York: Perseus Books.

    Google Scholar 

  17. Freund, R. (2020). How derivation modes and halting conditions may influence the computational power of P systems. Journal of Membrane Computing, 2(1), 14–25.

    Article  MathSciNet  Google Scholar 

  18. Kuhn, S., & Ulidowski, I. (2018). Local reversibility in a calculus of covalent bonding. Science of Computer Programming, 151, 18–47.

    Article  Google Scholar 

  19. Kuhn, S., Aman, B., Ciobanu, G., Philippou, A., Psara, K., & Ulidowski, I. (2020). Reversibility in chemical reactions. Lecture Notes in Computer Science, 12070, 151–176.

    Article  Google Scholar 

  20. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5, 183–191.

    Article  MathSciNet  Google Scholar 

  21. Milner, R. (1999). Communicating and mobile systems: the π-calculus. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  22. Morita, K. (2017). Theory of reversible Computing. Monographs in theoretical computer science. Berlin: Springer.

    Book  Google Scholar 

  23. Păun, Gh. (2002). Membrane computing. An introduction. Berlin: Springer.

    Book  Google Scholar 

  24. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). Handbook of membrane computing. Oxford: Oxford University Press.

    MATH  Google Scholar 

  25. Phillips, I., & Ulidowski, I. (2007). Reversing algebraic process calculi. Journal of Logic and Algebraic Programming, 73, 70–96.

    Article  MathSciNet  Google Scholar 

  26. Pinna, G. M. (2018). Reversing steps in membrane systems computations. Lecture Notes in Computer Science, 10725, 245–261.

    Article  MathSciNet  Google Scholar 

  27. Rozenberg, G., Back, T., & Kok, J. (Eds.). (2012). Handbook of natural computing. Berlin: Springer.

    MATH  Google Scholar 

  28. Voellmy, R. (1994). Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Critical Reviews in Eukaryotic Gene Expression, 4, 357–401.

    Google Scholar 

  29. Yokoyama, T. (2010). Reversible computation and reversible programming languages. Electronic Notes in Theoretical Computer Science, 253(6), 71–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Ciobanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman, B., Ciobanu, G. Reversible computation in nature inspired rule-based systems. J Membr Comput 2, 246–254 (2020). https://doi.org/10.1007/s41965-020-00053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00053-z

Keywords

Navigation