Skip to main content
Log in

The computational power of cell-like P systems with one protein on membrane

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

P systems with proteins on membranes are biologically-inspired distributed parallel computing models, where a multiset of proteins is associated with a membrane. In this paper, we propose a variant of such systems, in this case with one protein on a membrane, where only one protein is placed on a membrane, and such protein can either change or not change when the corresponding evolution rule is used. This novel variant of membrane systems is named P systems with one protein on membrane. The computational power of such kind of systems is studied. We prove that the proposed P systems using two membranes and only one protein per membrane are universal if different types of rules are assembled in an appropriate way. These results show that membrane proteins play a crucial role to achieve the Turing completeness in cell-like P systems with one protein on membrane framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhazov, A., & Freund, R. (2015). Variants of small universal P systems with catalysts. Fundamenta Informaticae,138, 227–250.

    Article  MathSciNet  Google Scholar 

  2. Bel-Enguix, G., & Gramatovici, R. (2003). Parsing with active P automata. Lecture Notes in Computer Science,2933, 31–42.

    Article  Google Scholar 

  3. Ceterchi, R., Gramatovici, R., Jonoska, N., & Subramanian, K. G. (2003). Tissue-like P systems with active membranes for picture generation. Fundamenta Informaticae,56(4), 311–328.

    MathSciNet  MATH  Google Scholar 

  4. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G., & Verlan, S. (2007). On small universal antiport P systems. Theoretical Computer Science,372(2), 152–164.

    Article  MathSciNet  Google Scholar 

  5. Enguix, G. B. (2004). Unstable P systems: applications to linguistics. Lecture Notes in Computer Science,3365, 190–209.

    Article  Google Scholar 

  6. Freund, R., Oswald, M., & Schirk, T. (2007). How a membrane agent buys goods in a membrane store. Progress in Natural Science,17(4), 442–448.

    Article  MathSciNet  Google Scholar 

  7. Guo, P., Quan, C., & Ye, L. (2019). UPSimulator: a general P system simulator. Knowledge-Based Systems, 170, 20–25.

    Article  Google Scholar 

  8. Ionescu, M., Păun, Gh, & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2–3), 279–308.

    MathSciNet  MATH  Google Scholar 

  9. Krishna, S. (2007). On the computational power of flip-flop proteins on membranes. Lecture Notes in Computer Science,4497, 695–704.

    Article  MathSciNet  Google Scholar 

  10. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, C. (2015). Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae,138(1–2), 97–111.

    Article  MathSciNet  Google Scholar 

  11. Macías-Ramos, L. F., Song, B., Valencia-Cabrera, L., Pan, L., & Pérez-Jiménez, M. J. (2016). Membrane fission: acomputational complexity perspective. Complexity, 21(6), 321–334.

    Article  MathSciNet  Google Scholar 

  12. Manca, V., & Bianco, L. (2008). Biological networks in metabolic P systems. BioSystems,91(3), 489–498.

    Article  Google Scholar 

  13. Martín-Vide, C., Păun, Gh, Pazos, J., & Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326.

    Article  MathSciNet  Google Scholar 

  14. Minsky, M. L. (1967). Computation: finite and infinite machines. Englewood Cliffs, N.J.: Prentice-Hall Inc.

    MATH  Google Scholar 

  15. Nagy, B., & Szegedi, L. (2006). Membrane computing and graphical operating systems. Journal of Universal Computer Science,12(9), 1312–1331.

    Google Scholar 

  16. Pan, L., & Pérez-Jiménez, M. J. (2010). Computational complexity of tissue-like P systems. Journal of Complexity,26(3), 296–315.

    Article  MathSciNet  Google Scholar 

  17. Pan, L., Song, B., Valencia-Cabrera, L. and Pérez-Jiménez, M.J. (2018). The computational complexity of tissue P systems with evolutional symport/antiport rules. Complexity 3745210.

  18. Pan, T., Xu, J., Jiang, S., & Xu, F. (2019). Cell-like spiking neural P systems with evolution rules. Soft Computing,. https://doi.org/10.1007/s00500-018-3500-7.

  19. Păun, A., & Păun, Gh. (2002). The power of communication: P systems with symport/antiport. New Generation Computing,20(3), 295–306.

    Article  Google Scholar 

  20. Păun, A., Păun, M., Rodríguez-Patón, A., & Sidoroff, M. (2011). P systems with proteins on membranes: a survey. International Journal of Foundations of Computer Science, 22(1), 39–53.

    Article  MathSciNet  Google Scholar 

  21. Păun, A., & Popa, B. (2006a). P systems with proteins on membranes. Fundamenta Informaticae,72, 467–483.

    MathSciNet  MATH  Google Scholar 

  22. Păun, A., & Popa, B. (2006b). P systems with proteins on membranes and membrane division. Lecture Notes in Computer Science,4036, 292–303.

    Article  MathSciNet  Google Scholar 

  23. Păun, A., & Rodríuez-Patón, A. (2007). On flip-flop membrane systems with proteins. Lecture Notes in Computer Science,4860, 414–427.

    Article  Google Scholar 

  24. Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences,61(1), 108–143.

    Article  MathSciNet  Google Scholar 

  25. Păun, Gh, & Păun, R. (2006). Membrane computing and economics: numerical P systems. Fundamenta Informaticae, 73, 213–227.

    MathSciNet  MATH  Google Scholar 

  26. Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). Handbook of Membrane Computing. New York: Oxford University Press.

    MATH  Google Scholar 

  27. Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowledge-Based Systems,125, 74–82.

    Article  Google Scholar 

  28. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems,163, 875–884.

    Article  Google Scholar 

  29. Popa, B. (2006). Membranes systems with limited parallelism. PhD Thesis, Louisiana Tech. Univ., Ruston, USA.

  30. Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). Modelling gene expression control using P systems: the lac operon, a case study. BioSystems, 91(3), 438–457.

    Article  Google Scholar 

  31. Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of Formal Languages (Vol. 3). Berlin: Springer-Verlag.

    MATH  Google Scholar 

  32. Song, B. and Kong, Y. (2019). Solution to PSPACE-complete problem using P systems with active membranes with time-freeness. Mathematical Problems in Engineering, 5793234.

  33. Song, B., Li, K., Orellana-Martín, D., Valencia-Cabrera, L. and Pérez-Jiménez, M.J. (2020). Cell-like P systems with evolutional symport/antiport rules and membrane creation. Information and Computation, 104542.

  34. Song, T., & Pan, L. (2015). Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Transactions on NanoBioscience,14, 465–477.

    Article  Google Scholar 

  35. Song, B., Pan, L., & Pérez-Jiménez, M. J. (2016). Tissue P systems with protein on cells. Fundamenta Informaticae,144, 77–107.

    Article  MathSciNet  Google Scholar 

  36. Song, B., Pérez-Jiménez, M. J., & Pan, L. (2015). Computational efficiency and universality of timed P systems with membrane creation. Soft Computing,19(11), 3043–3053.

    Article  Google Scholar 

  37. Song, B., Pérez-Jiménez, M. J., & Pan, L. (2017a). An efficient time-free solution to QSAT problem using P systems with proteins on membranes. Information and Computation,256, 287–299.

    Article  MathSciNet  Google Scholar 

  38. Song, B., Zeng, X., Jiang, M., & Pérez-Jiménez, M. J. (2020). Monodirectional tissue P systems with promoters. IEEE Transactions on Cybernetics,. https://doi.org/10.1109/TCYB.2020.3003060.

  39. Song, B., Zeng, X., & Rodríguez-Patón, A. (2021). Monodirectional tissue P systems with channel states. Information Sciences,546, 206–219.

    Article  MathSciNet  Google Scholar 

  40. Song, B., Zhang, C., & Pan, L. (2017b). Tissue-like P systems with evolutional symport/antiport rules. Information Sciences,378, 177–193.

    Article  MathSciNet  Google Scholar 

  41. Sosík, P., Păun, A., & Rodríguez-Patón, A. (2013). P systems with proteins on membranes characterize PSPACE. Theoretical Computer Science,488, 78–95.

    Article  MathSciNet  Google Scholar 

  42. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (61972138, 61872309), the Fundamental Research Funds for the Central Universities (531118010355), the Hunan Provincial Natural Science Foundation of China (2020JJ4215), and the Key Research and Development Program of Changsha (kq2004016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bosheng Song.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Luo, X., Valencia-Cabrera, L. et al. The computational power of cell-like P systems with one protein on membrane. J Membr Comput 2, 332–340 (2020). https://doi.org/10.1007/s41965-020-00063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00063-x

Keywords

Navigation