Skip to main content
Log in

A return to stochasticity and probability in spiking neural P systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

This work continues the investigations of introducing probabilities to spiking neural P systems, SN P systems in short—membrane computing models inspired from biological spiking neurons. A particular interest for SN P systems in this work is the nondeterministic selection of applicable firing rules. Rules represent the possible reactions of a neuron to the number of electrical impulses, or spikes, present. Intuitively, having nondeterministic selection can be interpreted as having a random choice with equal probabilities for all options. This seems unnatural in some biological sense, since some reactions are more active than others in general as emphasized in Obtułowicz and Păun, BioSystems 70(2):107–121, 2003. Results found that the stochastic process introduced to the nondeterministic selection of firing rules also applies to application of rules in general whether the rule is for firing or forgetting and whether a single rule is applicable or multiple. This work proposes SN P systems with stochastic application of rules, \(\star \)SN P systems in short. \(\star \)SN P systems are variants which introduce a stochastic process a priori to the application of rules in SN P systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. stochastic application of rules

References

  1. Adorna, H. N. (2020). Computing with sn p systems with i/o mode. Journal of Membrane Computing, 2(4), 230–245.

    Article  MathSciNet  Google Scholar 

  2. Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural P systems with scheduled synapses. IEEE Transactions on Nanobioscience, 16(8), 792–801.

    Article  Google Scholar 

  3. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural p systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    Article  Google Scholar 

  4. Cattani, S., Segala, R., Kwiatkowska, M., & Norman, G. (2005). Stochastic transition systems for continuous state spaces and non-determinism. In: International conference on foundations of software science and computation structures (pp. 125–139). Springer.

  5. Cavaliere, M., & Mura, I. (2008). Experiments on the reliability of stochastic spiking neural P systems. Natural Computing, 7(4), 453–470.

    Article  MathSciNet  Google Scholar 

  6. Colomer, M. À., Margalida, A., & Pérez-Jiménez, M. J. (2013). Population dynamics P system (PDP) models: a standardized protocol for describing and applying novel bio-inspired computing tools. PloS One, 8(4), e60698.

    Article  Google Scholar 

  7. de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural p systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.

    Article  MathSciNet  Google Scholar 

  8. Fu, K. (1970). 11 stochastic automata as models of learning systems. In Mathematics in science and engineering (Vol. 66, pp. 393–431). Elsevier. https://www.sciencedirect.com/science/article/pii/S0076539208605019

  9. Ibarra, O. H., Pérez-Jiménez, M. J., & Yokomori, T. (2010). On spiking neural p systems. Natural Computing, 9(2), 475–491.

    Article  MathSciNet  Google Scholar 

  10. Ibarra, O.H., & Woodworth, S. (2006). Characterizations of some restricted spiking neural P systems. In: International workshop on membrane computing (pp. 424–442). Springer.

  11. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2, 3), 279–308.

  12. Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural p system with generalized use of rules. Journal of Membrane Computing, 1(4), 270–278.

    Article  MathSciNet  Google Scholar 

  13. Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buño, K. C., Adorna, H. N., Hernandez, N. H. S., et al. (2019). Matrix representation and simulation algorithm of spiking neural p systems with structural plasticity. Journal of Membrane Computing, 1(3), 145–160.

    Article  MathSciNet  Google Scholar 

  14. Kasabov, N. (2010). To spike or not to spike: A probabilistic spiking neuron model. Neural Networks, 23(1), 16–19.

    Article  Google Scholar 

  15. Maass, W. (1996). On the computational power of noisy spiking neurons. In: Advances in neural information processing systems (pp. 211–217).

  16. Madhu, M. (2003). Probabilistic rewriting P systems. International Journal of Foundations of Computer Science, 14(01), 157–166.

    Article  MathSciNet  Google Scholar 

  17. Minsky, M. L. (1967). Computation. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  18. Narendra, K. S., & Thathachar, M. A. (1974). Learning automata—a survey. IEEE Transactions on Systems, Man, and Cybernetics, 4, 323–334.

    Article  MathSciNet  Google Scholar 

  19. Nishida, T. Y. (2002). Simulations of photosynthesis by a \(k\)-subset transforming system with membrane. Fundamenta Informaticae, 49(1–3), 249–259.

    MathSciNet  MATH  Google Scholar 

  20. Obtulowicz, A. (2013). 24 biologically plausible applications of spiking neural p systems for an explanation of brain cognitive functions. In: M. Gheorghe, G. Păun, M.J. Pérez-Jiménez, G. Rozenberg (Eds.), Research frontiers of membrane computing: open problems and research topics, 5, chap. 23 (pp. 547–623). International Journal of Foundations of Computer Science (2013). 10.1142/S0129054113500202. https://doi.org/10.1142/S0129054113500202.

  21. Obtułowicz, A., & Păun, G. (2003). (in search of) probabilistic P systems. BioSystems, 70(2), 107–121.

    Article  Google Scholar 

  22. Ochirbat, O., Ishdorj, T. O., & Cichon, G. (2020). An error-tolerant serial binary full-adder via a spiking neural p system using hp/lp basic neurons. Journal of Membrane Computing, 2(1), 42–48.

    Article  MathSciNet  Google Scholar 

  23. Pérez-Jiménez, M. J., & Romero-Campero, F. J. (2006). P systems, a new computational modelling tool for systems biology. In Transactions on computational systems biology VI (pp. 176–197). Springer.

  24. Pescini, D., Besozzi, D., Mauri, G., & Zandron, C. (2006). Dynamical probabilistic P systems. International Journal of Foundations of Computer Science, 17(01), 183–204.

    Article  MathSciNet  Google Scholar 

  25. Rossello, J. L., Canals, V., Morro, A., & Oliver, A. (2012). Hardware implementation of stochastic spiking neural networks. International Journal of Neural Systems, 22(04), 1250014.

    Article  Google Scholar 

  26. Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning.

  27. Stirzaker, D. (2005). Stochastic Processes & Models. Oxford: Oxford University Press.

    MATH  Google Scholar 

  28. Suzuki, Y., Fujiwara, Y., Takabayashi, J., & Tanaka, H. (2000). Artificial life applications of a class of P systems: Abstract rewriting systems on multisets. In Workshop on membrane computing (pp. 299–346). Springer.

  29. Verlan, S., Freund, R., Alhazov, A., Ivanov, S., & Pan, L. (2020). A formal framework for spiking neural p systems. Journal of Membrane Computing, 2(4), 355–368.

    Article  MathSciNet  Google Scholar 

  30. Von Neumann, J., & Kurzweil, R. (2012). The computer and the brain. Yale University Press.

  31. Xu, Z., Cavaliere, M., An, P., Vrudhula, S., & Cao, Y. (2014). The stochastic loss of spikes in spiking neural P systems: Design and implementation of reliable arithmetic circuits. Fundamenta Informaticae, 134(1–2), 183–200.

    Article  MathSciNet  Google Scholar 

  32. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006.

    Article  Google Scholar 

  33. Zhu, M., Yang, Q., Dong, J., Zhang, G., Gou, X., Rong, H., Paul, P., & Neri, F. (2020). An adaptive optimization spiking neural p system for binary problems. International Journal of Neural Systems 2050054. https://www.worldscientific.com/doi/abs/10.1142/S0129065720500549

Download references

Acknowledgement

F.G.C. Cabarle thanks the support from the DOST-ERDT project; the Dean Ruben A. Garcia PCA AY2017–2020. H. Adorna would like to thank supports from DOST-ERDT project since 2009 until present; the Semirara Mining Corp. Professorial Chair Award since 2015 until present. The RLC grant from UPD - OVCRD 2019–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis George C. Cabarle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Summary of surveyed stochastic computing models
Table 2 A computation in the system from Fig. 4
Table 3 A computation in the system from Fig. 5
Table 4 A computation in the system from Fig. 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazo, P.P.L., Cabarle, F.G.C., Adorna, H.N. et al. A return to stochasticity and probability in spiking neural P systems. J Membr Comput 3, 149–161 (2021). https://doi.org/10.1007/s41965-021-00072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-021-00072-4

Keywords

Navigation