Skip to main content
Log in

On the efficiency of synchronized P systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

We consider synchronized membrane systems extended with communication and division rules, using the maximal parallelism evolution strategy together with synchronization between non-cooperating rewriting rules of length at most three. We prove that in this framework, we can obtain in polynomial time solutions to the NP-complete problems SAT, Threshold-SAT and Unique-SAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhazov, A., Margenstern, M., & Verlan, S. (2008). Fast synchronization in P systems. In: D.W. Corne, P. Frisco, G. Păun, G. Rozenberg, A. Salomaa (Eds.) Membrane computing—9th international workshop, WMC 2008, Edinburgh, UK, July 28–31, 2008, revised selected and invited papers, lecture notes in computer science (vol. 5391, pp. 118–128). Springer. https://doi.org/10.1007/978-3-540-95885-7_9

  2. Alhazov, A., Pan, L., & Păun, G. (2004). Trading polarizations for labels in P systems with active membranes. Acta Informatica, 41(2–3), 111–144. https://doi.org/10.1007/s00236-004-0153-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Aman, B., & Ciobanu, G. (2008). Describing the immune system using enhanced mobile membranes. Electronic Notes in Theoretical Computer Science, 194(3), 5–18. https://doi.org/10.1016/j.entcs.2007.12.003.

    Article  MATH  Google Scholar 

  4. Aman, B., & Ciobanu, G. (2009). Turing completeness using three mobile membranes. In: C.S. Calude, J.F. Costa, N. Dershowitz, E. Freire, G. Rozenberg (Eds.) Unconventional computation, 8th international conference, UC 2009, Ponta Delgada, Azores, Portugal, September 7–11, 2009. Proceedings, Lecture Notes in Computer Science (vol. 5715, pp. 42–55). Springer. https://doi.org/10.1007/978-3-642-03745-0_12

  5. Aman, B., & Ciobanu, G. (2011). Mobility in process calculi and natural computing. Natural computing series. Berlin: Springer. https://doi.org/10.1007/978-3-642-24867-2.

    Book  MATH  Google Scholar 

  6. Aman, B., & Ciobanu, G. (2011). Solving a weak NP-complete problem in polynomial time by using mutual mobile membrane systems. Acta Informatica, 48(7–8), 409–415. https://doi.org/10.1007/s00236-011-0144-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Aman, B., & Ciobanu, G. (2017). Efficiently solving the bin packing problem through bio-inspired mobility. Acta Informatica, 54(4), 435–445. https://doi.org/10.1007/s00236-016-0264-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Aman, B., & Ciobanu, G. (2018). Adaptive P systems. In: T. Hinze, G. Rozenberg, A. Salomaa, C. Zandron (Eds.) Membrane computing—19th international conference, CMC 2018, Dresden, Germany, September 4–7, 2018, revised selected papers, lecture notes in computer science (vol. 11399, pp. 57–72). Springer. https://doi.org/10.1007/978-3-030-12797-8_5

  9. Aman, B., & Ciobanu, G. (2019). Synchronization of rules in membrane computing. Journal of Membrane Computing, 1(4), 233–240. https://doi.org/10.1007/s41965-019-00022-1.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cavaliere, M., & Sburlan, D. (2005). Time and synchronization in membrane systems. Fundamenta Informaticae, 64(1-4), 65–77. http://www.content.iospress.com/articles/fundamenta-informaticae/fi64-1-4-07

  11. Cecilia, J. M., García, J. M., Guerrero, G. D., Martínez-del-Amor, M. A., Pérez-Hurtado, I., & Pérez-Jiménez, M. J. (2010). Simulating a P system based efficient solution to SAT by using GPUs. Journal of Logical and Algebraic Methods in Programming, 79(6), 317–325. https://doi.org/10.1016/j.jlap.2010.03.008.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciobanu, G., Pérez-Jiménez, M. J., & Păun, G. (Eds.). (2006). Applications of membrane computing. Natural computing series. Berlin: Springer. https://doi.org/10.1007/3-540-29937-8.

    Book  Google Scholar 

  13. Dinneen, M. J., Kim, Y., & Nicolescu, R. (2012). Faster synchronization in P systems. Natural Computing, 11(1), 107–115. https://doi.org/10.1007/s11047-011-9271-z.

    Article  MathSciNet  MATH  Google Scholar 

  14. Frisco, P., Gheorghe, M., & Pérez-Jiménez, M. J. (Eds.). (2014). Applications of membrane computing in systems and synthetic biology. Emergence, complexity and computation. Berlin: Springer. https://doi.org/10.1007/978-3-319-03191-0.

    Book  Google Scholar 

  15. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman.

    MATH  Google Scholar 

  16. Gheorghe, M., & Ipate, F. (2013). A kernel P systems survey. In A. Alhazov, S. Cojocaru, M. Gheorghe, Y. Rogozhin, G. Rozenberg, A. Salomaa (Eds.) Membrane computing—14th international conference, CMC 2013, Chişinău, Republic of Moldova, August 20–23, 2013, revised selected papers, lecture notes in computer science (vol. 8340, pp. 1–9). Springer. https://doi.org/10.1007/978-3-642-54239-8_1

  17. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., & Romero-Campero, F. J. (2007). A uniform solution to SAT using membrane creation. Theoretical Computer Science, 371(1–2), 54–61. https://doi.org/10.1016/j.tcs.2006.10.013.

    Article  MathSciNet  MATH  Google Scholar 

  18. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. (2018). The unique satisfiability problem from a membrane computing perspective. Romanian Journal of Information Science and Technology, 21, 288–297.

    Google Scholar 

  19. Pan, L., & Alhazov, A. (2006). Solving HPP and SAT by P systems with active membranes and separation rules. Acta Informatica, 43(2), 131–145. https://doi.org/10.1007/s00236-006-0018-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Păun, G. (2001). P systems with active membranes: Attacking NP-complete problems. Journal of Automata, Languages and Combinatorics, 6(1), 75–90. https://doi.org/10.25596/jalc-2001-075.

    Article  MathSciNet  MATH  Google Scholar 

  21. Păun, G. (2002). Membrane computing: An introduction. Natural computing series. Berlin: Springer. https://doi.org/10.1007/978-3-642-56196-2.

    Book  MATH  Google Scholar 

  22. Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. Oxford: Oxford University Press Inc.

    Book  Google Scholar 

  23. Păun, G., & Yu, S. (1999). On synchronization in P systems. Fundamenta Informaticae, 38(4), 397–410. https://doi.org/10.3233/FI-1999-38404.

    Article  MathSciNet  MATH  Google Scholar 

  24. Pérez-Jiménez, M.J. (2004). An approach to computational complexity in membrane computing. In G. Mauri, G. Paun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.) Membrane computing, 5th international workshop, WMC 2004, Milan, Italy, June 14–16, 2004, revised selected and invited papers, lecture notes in computer science (vol. 3365, pp. 85–109). Springer. https://doi.org/10.1007/978-3-540-31837-8_5.

  25. Pérez-Jiménez, M. J., Jiménez, Á. R., & Sancho-Caparrini, F. (2003). Complexity classes in models of cellular computing with membranes. Natural Computing, 2(3), 265–285. https://doi.org/10.1023/A:1025449224520.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pérez-Jiménez, M. J., Riscos-Núñez, A., Romero-Jiménez, Á., & Woods, D. (2010). Complexity: Membrane division, membrane creation. In G. Păun, G. Rozenberg, & A. Salomaa (Eds.), The Oxford handbook of membrane computing (pp. 302–336). Oxford: Oxford University Press Inc.

    Google Scholar 

  27. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). Elementary active membranes have the power of counting. International Journal of Natural Computing Research, 2(3), 35–48. https://doi.org/10.4018/jncr.2011070104.

    Article  Google Scholar 

  28. Rozenberg, G., & Salomaa, A. (Eds.). (1997). Handbook of formal languages (Vol. 3). Berlin: Springer.

    MATH  Google Scholar 

  29. Song, B., & Pan, L. (2021). Rule synchronization for tissue P systems. Information and Computation. https://doi.org/10.1016/j.ic.2020.104685.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (Eds.). (2017). Real-life applications with membrane computing. Emergence, complexity and computation. Berlin: Springer. https://doi.org/10.1007/978-3-319-55989-6.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Aman.

Ethics declarations

Conflict of interest

The author declares he has no financial interests and no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was presented at the Int’l Conference on Membrane Computing (ICMC21).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman, B. On the efficiency of synchronized P systems. J Membr Comput 4, 1–10 (2022). https://doi.org/10.1007/s41965-021-00091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-021-00091-1

Keywords

Navigation