Skip to main content
Log in

Matrix representation and simulation algorithm of numerical spiking neural P systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Spiking neural P systems (SNP systems) are biologically inspired models of computation based on the firing behavior of neurons. Variations of these systems have been proposed to solve more specific problems. A more recent variation called the numerical spiking neural P systems combines concepts from SNP systems and numerical P systems to create a new model of computation. This model allows continuous production functions and, in effect, allows for faster computation. In this work, we propose a matrix representation and a corresponding simulation algorithm for NSNP systems. Having a matrix representation and a simulation algorithm allows for testing of solutions in silico. We also present an NSNP system that solves the subset sum problem, and use the matrix representation and simulation algorithm to obtain the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Calude, C., & Paun, G. (2000). Computing with cells and atoms: An introduction to quantum, DNA and membrane computing. CRC Press.

    MATH  Google Scholar 

  2. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2, 3), 279–308.

    MathSciNet  MATH  Google Scholar 

  3. Păun, G., & Păun, R. (2006). Membrane computing and economics: Numerical p systems. Fundamenta Informaticae, 73(1, 2), 213–227.

    MathSciNet  MATH  Google Scholar 

  4. Leporati, A., Zandron, C., Ferretti, C., & Mauri, G. (2007). Solving numerical np-complete problems with spiking neural p systems. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing (pp. 336–352). Springer.

    Chapter  Google Scholar 

  5. Song, T., Pang, S., Hao, S., Rodríguez-Patón, A., & Zheng, P. (2018). A parallel image skeletonizing method using spiking neural p systems with weights. Neural Processing Letters, 50, 1485–1502. https://doi.org/10.1007/s11063-018-9947-9

    Article  Google Scholar 

  6. Zeng, X., Adorna, H., Martínez-del-Amor, M. Á., Pan, L., & Pérez-Jiménez, M. J. (2011). Matrix representation of spiking neural P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (Eds.) Membrane computing: 11th international conference, CMC 2010, Jena, Germany, August 24–27, 2010. Revised selected papers (pp. 377–391). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-18123-8_29

  7. Cabarle, F. G. C., Adorna, H. N., Martínez-del-Amor, M. A., & Pérez-Jiménez, M. J. (2012). Improving GPU simulations of spiking neural p systems. Romanian Journal of Information Science and Technology, 15, 5–20.

    Google Scholar 

  8. Carandang, J. P. A., Cabarle, F. G. C., Adorna, H. N., Hernandez, N. H. S., Martínez-del-Amor, M. A. (2017). Nondeterminism in spiking neural P systems: algorithms and simulations. In: 6th Asian conference on membrane computing (ACMC2017), 21–25 September, 2017, Chengdu, China.

  9. Carandang, J. P. A., Villaflores, J. M. B., Cabarle, F. G. C., Adorna, H. N., & Martínez-del-Amor, M. A. (2017). Cusnp: Spiking neural p systems simulators in cuda. Romanian Journal of Information Science and Technology, 20, 57–70.

    Google Scholar 

  10. Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buño, K. C., Adorna, H., Hernandez, N. H. S., & Zeng, X. (2019). Matrix representation and simulation algorithm of spiking neural p systems with structural plasticity. Journal of Membrane Computing, 1, 145–160.

    Article  MathSciNet  Google Scholar 

  11. Cabarle, F. G. C., De La Cruz, R. T. A., Cailipan, D. P. P., Zhang, D., Liu, X., & Zeng, X. (2019). On solutions and representations of spiking neural p systems with rules on synapses. Information Sciences, 501, 30–49.

    Article  MathSciNet  Google Scholar 

  12. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., de La Cruz, R. T., Ballesteros, K. J., & Lazo, P. P. L. (2022). A web-based visual simulator for spiking neural P systems. Journal of Membrane Computing. https://doi.org/10.1007/s41965-022-00092-8

  13. Fernandez, A. D. C., Fresco, R. M., Cabarle, F. G. C., de la Cruz, R. T. A., Macababayao, I. C. H., Ballesteros, K. J., & Adorna, H. N. (2021). Snapse: A visual tool for spiking neural p systems. Processes, 9(1), 72.

    Article  Google Scholar 

  14. Aboy, B. C. D., Bariring, E. J. A., Carandang, J. P., Cabarle, F. G. C., Cruz, R. T. D. L., Adorna, H. N., & Martínez-del-Amor, M. Á. (2019). Optimizations in cusnp simulator for spiking neural p systems on cuda gpus. In: 2019 international conference on high performance computing simulation (HPCS) (pp. 535–542). https://doi.org/10.1109/HPCS48598.2019.9188174

  15. Hernández-Tello, J., Martínez-Del-Amor, M. Á., Orellana-Martín, D., & Cabarle, F. G. (2021). Sparse matrix representation of spiking neural P Systems on GPUs. In: International conference on membrane computing, Debrecen, Hungary.

  16. Martínez-del-Amor, M. Á., Orellana-Martín, D., Pérez-Hurtado, I., Cabarle, F. G. C., & Adorna, H. N. (2021). Simulation of spiking neural p systems with sparse matrix-vector operations. Processes. https://doi.org/10.3390/pr9040690

    Article  Google Scholar 

  17. Wu, T., Pan, L., Yu, Q., & Tan, K. C. (2020) Numerical spiking neural p systems. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2443–2457. https://doi.org/10.1109/TNNLS.2020.3005538.

  18. Adorna, H. N. (2019). Matrix representation of spiking neural P systems: Revisited. In: G. Păun (Ed.) Proceedings 20th international conference on membrane computing, August 3–8, 2019 (pp. 227–248). Râmnicu Vâlcea, Romania: Editura BIBLIOSTAR.

  19. Cabarle, F. G. C., de la Cruz, R. T. A., Cailipan, D. P. P., Zhang, D., Liu, X., & Zeng, X. (2019). On solutions and representations of spiking neural p systems with rules on synapses. Information Sciences, 501, 30–49.

    Article  MathSciNet  Google Scholar 

  20. Leporati, A., Mauri, G., Zandron, C., Păun, G., & Pérez-Jiménez, M. J. (2009). Uniform solutions to sat and subset sum by spiking neural p systems. Natural computing, 8(4), 681–702.

    Article  MathSciNet  Google Scholar 

  21. Yin, X., Liu, X., Sun, M., & Ren, Q. (2021). Novel numerical spiking neural p systems with a variable consumption strategy. Processes. https://doi.org/10.3390/pr9030549

    Article  Google Scholar 

  22. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. L. D., & Rodríguez-Patón, A. (2019). Spiking neural p systems with learning functions. IEEE Transactions on NanoBioscience, 18(2), 176–190.

    Article  Google Scholar 

Download references

Acknowledgements

K. J. Ballesteros and R. T. A. De La Cruz acknowledge support from ERDT scholarships of the DOST-SEI, Philippines. F. G. C. Cabarle acknowledges support from ERDT of DOST-SEI, the Dean Ruben A. Garcia PCA from the University of the Philippines Diliman (UPD), and an RLC grant from the Office of the Vice Chancellor for Research and Development of UPD. H. N. Adorna is supported by the Semirara Mining Corporation PCA, also from UP Diliman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis George C. Cabarle.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Universality modules from [17]

See Figs. 8, 9 and 10.

Fig. 8
figure 8

ADD module

Fig. 9
figure 9

SUB module

Fig. 10
figure 10

FIN module

Appendix B: Sample computation graphs

See Figs. 11, 12 and 13.

Fig. 11
figure 11

Configuration graph of the ADD module presented in Ref. [17] generated using Algorithm 3

Fig. 12
figure 12

Configuration graph of the SUB module presented in Ref. [17] generated using Algorithm 3

Fig. 13
figure 13

Configuration graph of the FIN module presented in Ref. [17] generated using Algorithm 3

Appendix C: Helper algorithms of Algorithm 1

figure i
figure j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros, K.J., Cailipan, D.P.P., de la Cruz, R.T.A. et al. Matrix representation and simulation algorithm of numerical spiking neural P systems. J Membr Comput 4, 41–55 (2022). https://doi.org/10.1007/s41965-022-00093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00093-7

Keywords

Navigation