Skip to main content

Advertisement

Log in

ENPS-IPROMETHEE: Enzymatic Numerical P System-based Improved Preference Ranking Organization Method for Enrichment Evaluation

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Membrane Computing is a natural computing paradigm inspired by the structure and activity of a biological cell. Membrane-based models can be realized using P System and these models have multiple applications. Here, it is applied to solve a Multi-criteria Decision-Making (MCDM) problem. MCDM is one of the important area in Decision-Making. It involves ranking items from a given set of items based on multiple criteria and it has several applications in different broad arenas which include Economics, Engineering and Management. MCDM includes several clusters of techniques that have been divided based on its modes of operation. All the techniques available till now consider sequential computing paradigm as the base for computation but in this work a parallel technique is used. Here, Enzymatic Numerical P System (ENPS)-based MCDM technique is designed. ENPS is a variant of P System used specifically for numerical problems. The proposed model, ENPS-IPROMETHEE is based on Improved Preference Ranking Organization Method for Enrichment Evaluation (IPROMETHEE), a popular outranking-based MCDM method. The designed model is verified and tested using PeP and GPUPeP simulators which are used for simulating ENPS models. A membrane file generator tool called as P-Generator is developed for automatic membrane generation. Two standard, existing datasets are considered and the model is studied for its sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brans, J. P. (1982). L’ingénierie de la décision: l’élaboration d’instruments d’aide a la décision. Université Laval, Faculté des sciences de l’administration.

  2. Cheng, F., Qin, L., & Chen, Z. (2015). A membrane computing inspired optimization algorithm for function optimization problem. ICIC Express Letters Part B, Applications: An International Journal of Research and Surveys, 6(10), 2709–2714.

    Google Scholar 

  3. Dassow, J., & Păun, G. (1999). On the power of membrane computing. Journal of Universal Computer Science, 5(2):33–49. http://jucs.org/jucs_5_2/on_the_power_of_Dassow_J.pdf

  4. Dehghan-Manshadi, B., Mahmudi, H., Abedian, A., & Mahmudi, R. (2007). A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method. Materials and Design, 28(1), 8–15. https://doi.org/10.1016/j.matdes.2005.06.023.

    Article  Google Scholar 

  5. Díaz-Pernil, D., Fernández-Mírquez, C. M., García-Quismondo, M., Gutiérrez-Naranjo, M. A., & Martínez-del Amor, M. A. (2010). Solving sudoku with membrane computing. In 2010 IEEE fifth international conference on bio-inspired computing: theories and applications (BIC-TA) (IEEE, pp. 610–615).

  6. Farag, M. M. (2007). Materials and process selection for engineering design. Boca Raton: CRC Press.

    Google Scholar 

  7. Florea, A. G., & Buiu, C. (2018). PeP (Enzymatic) Numerical P System simulator. http://membranecomputing.net/pep/index.html

  8. Han, M., & Liu, C. (2014). Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine. Applied Soft Computing, 19, 430–437.

    Article  Google Scholar 

  9. Hu, J., Chen, G., Peng, H., Wang, J., Huang, X., & Luo, X. (2017). A kNN classifier optimized by P systems. In2017 13th international conference on natural computation (pp. 432–437). IEEE: Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

  10. Huang, L., & Wang, N. (2006). An optimization algorithm inspired by membrane computing. In International conference on natural computation (Springer, Berlin pp. 49–52).

  11. Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). Enzymatic numerical P systems using elementary arithmetic operations. In International conference on membrane computing (Springer, pp. 249–264). https://doi.org/10.1007/978-3-642-54239-8_18.

  12. Leporati, A., Porreca, AE., Zandron, C., & Mauri, G. (2013). Improving universality results on parallel Enzymatic Numerical P Systems. In Proceedings of the eleventh brainstorming week on membrane computing (Sevilla, Fénix Editora, pp. 177–200).

  13. Llorente Rivera, D., & Gutiérrez Naranjo, MÁ. (2015). The pole balancing problem with enzymatic numerical P systems. In Proceedings of the thirteenth brainstorming week on membrane computing (Fenix Editora, pp. 195–206).

  14. Maeda, S., & Fujiwara, A. (2014). Enzymatic numerical P Systems for basic operations and sorting. In: 2014 Joint 7th international conference on soft computing and intelligent systems, SCIS 2014 and 15th international symposium on advanced intelligent systems (ISIS 2014, IEEE, pp 1333–1338). https://doi.org/10.1109/SCIS-ISIS.2014.7044708.

  15. Maroosi, A., Muniyandi, R. C., Sundararajan, E., & Zin, A. M. (2016). A parallel membrane inspired harmony search for optimization problems: A case study based on a flexible job shop scheduling problem. Applied Soft Computing, 49, 120–136.

    Article  Google Scholar 

  16. Pan, L., Zhang, Z., Wu, T., & Xu, J. (2017). Numerical P systems with production thresholds. Theoretical Computer Science, 673, 30–41.

    Article  MathSciNet  Google Scholar 

  17. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  Google Scholar 

  18. Păun, G., & Păun, R. (2006). Membrane computing and economics: Numerical P Systems. Fundamenta Informaticae 73(1, 2):213–227, 0169-2968

  19. Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. Amsterdam: IOS Press.

    Book  Google Scholar 

  20. Păun, G., Wu, T., & Zhang, Z. (2016). Open problems, research topics, recent results on numerical and spiking neural P systems (The Curtea de Arges 2015 Series). In Proceedings of fourteenth brainstorming week on membrane computing (Sevilla, Spain: Fenix Editora, pp. 285–300). http://hdl.handle.net/11441/50698

  21. Pavel, A., Arsene, O., & Buiu, C. (2010). Enzymatic Numerical P Systems—A new class of membrane computing systems. In 2010 IEEE fifth international conference on bio-inspired computing: Theories and applications (BIC-TA) (IEEE, IEEE, pp. 1331–1336). https://doi.org/10.1109/BICTA.2010.5645071

  22. Pavel, A. B., & Buiu, C. (2012). Using Enzymatic Numerical P Systems for modeling mobile robot controllers. Natural Computing, 11(3), 387–393. https://doi.org/10.1007/s11047-011-9286-5.

    Article  MathSciNet  MATH  Google Scholar 

  23. Peng, H., Jiang, Y., Wang, J., & Pérez-Jiménez, M. (2015). Membrane clustering algorithm with hybrid evolutionary mechanisms. Journal Software, 26(5), 1001–1012.

    MathSciNet  MATH  Google Scholar 

  24. Peng, H., Jin, J., & Wang, J. (2016). Parallel implementation of membrane computing-inspired clustering algorithm on graphics processing unit. Journal of Computational and Theoretical Nanoscience, 13(6), 3673–3680.

    Article  Google Scholar 

  25. Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowledge-Based Systems, 125, 74–82.

    Article  Google Scholar 

  26. Peng, H., Shao, J., Li, B., Wang, J., Pérez Jiménez, MdJ., Jiang, Y., & Yang, Y. (2012). Image thresholding with cell-like p systems. In Proceedings of the tenth brainstorming week on membrane computing, (2) 75–88 Sevilla, ETS de Ingeniería Informática, 30 de Enero-3 de Febrero.

  27. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2015). An unsupervised learning algorithm for membrane computing. Information Sciences, 304, 80–91.

    Article  Google Scholar 

  28. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Shi, P. (2013). A novel image thresholding method based on membrane computing and fuzzy entropy. Journal of Intelligent and Fuzzy Systems, 24(2), 229–237.

    Article  Google Scholar 

  29. Peng, H., Zhang, J., Jiang, Y., Huang, X., & Wang, J. (2014). De-mc: A membrane clustering algorithm based on differential evolution mechanism. Romanian Journal Information Science and Technology, 17(1), 76–88.

    Google Scholar 

  30. Raghavan, S., Rai, S. S., Rohit, M., & Chandrasekaran, K. (2020). GPUPeP: Parallel enzymatic numerical P system simulator with a Python-based interface. Biosystems, 196, 104186.

    Article  Google Scholar 

  31. Rao, R. V. (2007). Decision making in the manufacturing environment: Using graph theory and fuzzy multiple attribute decision making methods. Berlin: Springer.

    MATH  Google Scholar 

  32. Singh, G., Deep, K., & Nagar, A. K. (2014). Cell-like p-systems based on rules of particle swarm optimization. Applied Mathematics and Computation, 246, 546–560.

    Article  MathSciNet  Google Scholar 

  33. Song, X., & Wang, J. (2014). A membrane-inspired evolutionary algorithm based on artificial bee colony algorithm. Bio-inspired computing-theories and applications (pp. 395–410). Berlin: Springer.

    Chapter  Google Scholar 

  34. Sun, L., Dong, H., Hussain, F. K., Hussain, O. K., & Chang, E. (2014). Cloud service selection: State-of-the-art and future research directions. Journal of Network and Computer Applications, 45, 134–150.

    Article  Google Scholar 

  35. Vasile, C., Brandusa, A., & Dumitrache, I. (2013). Universality of enzymatic numerical P systems. International Journal of Computer Mathematics, 90(4), 869–879. https://doi.org/10.1080/00207160.2012.748897.

    Article  MathSciNet  MATH  Google Scholar 

  36. Vasile, C. I., Pavel, A. B., & Dumitrache, I. (2012a). Improving the universality results of enzymatic numerical P systems. In Proceedings of the tenth brainstorming week on membrane computing (vol. 2, pp. 207–214, Fenix Editora).

  37. Vasile, C. I., Pavel, A. B., Dumitrache, I., & Păun, G. (2012). On the power of enzymatic numerical P systems. Acta Informatica, 49(6), 395–412. https://doi.org/10.1007/s00236-012-0166-y.

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J., Hu, J., Peng, H., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2015). Decision tree models induced by membrane systems. Science and Technology, 18(3), 228–239.

    Google Scholar 

  39. Wang, H., Peng, H., Shao, J., & Wang, T. (2012). A thresholding method based on p systems for image segmentation. ICIC Express Letters, 6(1), 221–227.

    Google Scholar 

  40. Xiao, J., Jiang, Y., He, J., & Cheng, Z. (2013). A dynamic membrane evolutionary algorithm for solving DNA sequences design with minimum free energy. Match Communications in Mathematical and in Computer Chemistry, 70(3), 971–986.

    MathSciNet  Google Scholar 

  41. Zhang, G., Cheng, J., & Gheorghe, M. (2014). Dynamic behavior analysis of membrane-inspired evolutionary algorithms. International Journal of Computers Communications and Control, 9(2), 227–242.

    Article  Google Scholar 

  42. Zhang, G., Gheorghe, M., Pan, L., & Pérez-Jiménez, M. J. (2014). Evolutionary membrane computing: A comprehensive survey and new results. Information Sciences, 279, 528–551.

    Article  Google Scholar 

  43. Zhang, Z., & Pan, L. (2016). Numerical P systems with thresholds. International Journal of Computers Communications and Control, 11(2), 292–304.

    Article  Google Scholar 

  44. Zhang, H., Peng, Y., Tian, G., Wang, D., & Xie, P. (2017). Green material selection for sustainability: A hybrid MCDM approach. PLOS ONE, 12(5), e0177578. https://doi.org/10.1371/journal.pone.0177578.

    Article  Google Scholar 

  45. Zhang, G., Rong, H., Cheng, J., & Qin, Y. (2014). A population-membrane-system-inspired evolutionary algorithm for distribution network reconfiguration. Chinese Journal of Electronics, 23(3), 437–441.

    Google Scholar 

  46. Zhang, Z., Wu, T., Păun, A., & Pan, L. (2016). Numerical P Systems with migrating variables. Theoretical Computer Science, 641, 85–108. https://doi.org/10.1016/j.tcs.2016.06.004.

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, Z., Wu, T., Păun, A., & Pan, L. (2018). Universal enzymatic numerical P systems with small number of enzymatic variables. Science China Information Sciences. https://doi.org/10.1007/s11432-017-9103-5.

    Article  MathSciNet  Google Scholar 

  48. Zhang, X. B., Zhang, G. X., & Cheng, J. X. (2013). An improved quantum-inspired evolutionary algorithm based on p systems with a dynamic membrane structure for knapsack problems. Applied Mechanics and Materials, Transactions Technical Publications, 239, 1528–1531.

    Google Scholar 

Download references

Acknowledgements

The work was supported by Visvesvaraya Ph.D. Scheme under Ministry of Electronics and Information Technology (MeitY), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raghavan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavan, S., Chandrasekaran, K. ENPS-IPROMETHEE: Enzymatic Numerical P System-based Improved Preference Ranking Organization Method for Enrichment Evaluation. J Membr Comput 4, 107–119 (2022). https://doi.org/10.1007/s41965-022-00099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00099-1

Keywords

Navigation