Skip to main content

A key agreement protocol based on spiking neural P systems with anti-spikes

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Spiking neural P systems, SN P systems for short, have found various applications over time. Perhaps the most important application to date is in the area of artificial intelligence where SN P systems are significant models of the third generation of neural networks. Another application of SN P systems that has not been researched much is cryptography. SN P systems can be used as computational devices on which various cryptographic algorithms can be implemented. Many of the machine learning algorithms that are applied in cryptography are based on neural networks which can be implemented using SN P systems. In this paper, we propose a new type of SN P system called Anti-Spiking Neural Tree Parity Machine. The system is inspired by how a Tree Parity Machine works and is constructed using SN P systems with anti-spikes. Based on the new system, we propose a novel key agreement protocol that allows two parties to communicate over a public channel and obtain a secret shared key. We perform multiple experiments in which we show the efficiency of our protocol and its security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adorna, H. N. (2020). Computing with SN P systems with I/O mode. Journal of Membrane Computing, 2(4), 230–245.

    Article  MATH  Google Scholar 

  2. Alhazov, A., Freund, R., & Ivanov, S. (2021). P systems with limited number of objects. Journal of Membrane Computing, 3(1), 1–9.

    Article  MATH  Google Scholar 

  3. Alhazov, A., & Sburlan, D. (2006). Static sorting P systems. Applications of Membrane Computing (pp. 215–252). Springer.

    Google Scholar 

  4. Allam, A.M., Abbas, H.M. (2009). Improved security of neural cryptography using don’t-trust-my-partner and error prediction. In: 2009 International Joint Conference on Neural Networks. IEEE, 121–127.

  5. Allam, A. M., & Abbas, H. M. (2010). On the improvement of neural cryptography using erroneous transmitted information with error prediction. IEEE transactions on neural networks, 21(12), 1915–1924.

    Article  Google Scholar 

  6. Bao, T., Zhou, N., Lv, Z., Peng, H., & Wang, J. (2020). Sequential dynamic threshold neural P systems. Journal of Membrane Computing, 2(4), 255–268.

    Article  MATH  Google Scholar 

  7. Carandang, J.P., Villaflores, J.M.B., Cabarle, F.G.C., Adorna, H.N., Martínez del Amor, M.Á. (2016). CuSNP: Spiking Neural P Systems Simulators in CUDA. In: ACMC 2016: The 5th Asian Conference on Membrane Computing, IMCS: International Membrane Computing Society, 451-468.

  8. Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural P systems. Theoretical Computer Science, 410(24–25), 2352–2364.

    Article  MATH  Google Scholar 

  9. Chen, Y., Chen, Y., Zhang, G., Paul, P., Wu, T., Zhang, X., Rong, H., Ma, X. (2021). A survey of learning Spiking Neural P systems and A Novel Instance. International Journal of Unconventional Computing, 16.

  10. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: a short survey. Journal of Membrane Computing, 1(1), 58–73.

    Article  Google Scholar 

  11. Dong, T., & Huang, T. (2019). Neural cryptography based on complex-valued neural network. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4999–5004.

    Article  Google Scholar 

  12. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., De La Cruz, R. T., Ballesteros, K. J., & Lazo, P. P. L. (2022). A web-based visual simulator for spiking neural P systems. Journal of Membrane Computing, 4(1), 21–40.

    Article  Google Scholar 

  13. Fernandez, A. D. C., Fresco, R. M., Cabarle, F. G. C., de la Cruz, R. T. A., Macababayao, I. C. H., Ballesteros, K. J., & Adorna, H. N. (2020). Snapse: A visual tool for spiking neural P systems. Processes, 9(1), 72.

    Article  Google Scholar 

  14. Ganbaatar, G., Nyamdorj, D., Cichon, G., & Ishdorj, T. O. (2021). Implementation of RSA cryptographic algorithm using SN P systems based on HP/LP neurons. Journal of Membrane Computing, 3(1), 22–34.

    Article  MATH  Google Scholar 

  15. García-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A. (2009). An overview of P-Lingua 2.0. In: International Workshop on Membrane Computing, Springer, 264–288.

  16. Gheorghe, M., Lefticaru, R., Konur, S., Niculescu, I. M., & Adorna, H. N. (2021). Spiking neural P systems: matrix representation and formal verification. Journal of Membrane Computing, 3(2), 133–148.

    Article  MATH  Google Scholar 

  17. Hinze, T., Happe, H., Henderson, A., & Nicolescu, R. (2020). Membrane computing with water. Journal of Membrane Computing, 2(2), 121–136.

    Article  MATH  Google Scholar 

  18. Hoffstein, J., Pipher, J., Silverman, J.H., Silverman, J.H. (2008). An introduction to mathematical cryptography, vol. 1. Springer.

  19. Ionescu, M., Păun, G., Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2–3), 279–308.

  20. Ipate, F., Lefticaru, R., Mierlă, L., Cabrera, L.V., Han, H., Zhang, G., Dragomir, C., Jiménez, M.J.P., Gheorghe, M. (2013). Kernel P systems: Applications and implementations. In: Proceedings of The Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Springer, 1081–1089.

  21. Javurek, M., Turčaník, M. (2016). Synchronization of two tree parity machines. In: 2016 New Trends in Signal Processing (NTSP). IEEE, 1–4.

  22. Jeong, S., Park, C., Hong, D., Seo, C., Jho, N. (2021) Neural cryptography based on generalized tree parity machine for real-life systems. Security and Communication Networks.

  23. Kanter, I., Kinzel, W., & Kanter, E. (2002). Secure exchange of information by synchronization of neural networks. EPL (Europhysics Letters), 57(1), 141.

    Article  MATH  Google Scholar 

  24. Klein, E., Mislovaty, R., Kanter, I., Ruttor, A., Kinzel, W. (2004). Synchronization of neural networks by mutual learning and its application to cryptography. Advances in Neural Information Processing Systems, 17.

  25. Lv, Z., Yang, Q., Peng, H., Song, X., & Wang, J. (2021). Computational power of sequential spiking neural P systems with multiple channels. Journal of Membrane Computing, 3(4), 270–283.

    Article  MATH  Google Scholar 

  26. Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326.

  27. Mayne, R., Phillips, N., & Adamatzky, A. (2019). Towards experimental P-systems using multivesicular liposomes. Journal of Membrane Computing, 1(1), 20–28.

    Article  Google Scholar 

  28. Mi, S., Zhang, L., Peng, H., & Wang, J. (2021). Medical image fusion based on DTNP systems and Laplacian pyramid. Journal of Membrane Computing, 3(4), 284–295.

    Article  Google Scholar 

  29. Michel, O., Jacquemard, F. (2006). An analysis of a public key protocol with membranes. In: Applications of membrane computing, Springer, 283–302.

  30. Mislovaty, R., Perchenok, Y., Kanter, I., & Kinzel, W. (2002). Secure key-exchange protocol with an absence of injective functions. Physical Review E, 66(6), 066102.

  31. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.

    Article  Google Scholar 

  32. Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(08), 1750042.

    Article  Google Scholar 

  33. Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural P systems with astrocytes. Neural Computation, 24(3), 805–825.

    Article  MATH  Google Scholar 

  34. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MATH  Google Scholar 

  35. Salguero Dorokhin, É., Fuertes, W., Lascano, E. (2019). On the development of an optimal structure of tree parity machine for the establishment of a cryptographic key. Security and Communication Networks, 2019.

  36. Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2), 303–332.

    Article  MATH  Google Scholar 

  37. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

    Article  Google Scholar 

  38. Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2017). Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 1106–1115.

    Article  Google Scholar 

  39. Song, X., Wang, J., Peng, H., Ning, G., Sun, Z., Wang, T., & Yang, F. (2018). Spiking neural P systems with multiple channels and anti-spikes. Biosystems, 169, 13–19.

    Article  Google Scholar 

  40. Stypiński, M., Niemiec, M. (2021). Synchronization of Tree Parity Machines using non-binary input vectors. arXiv preprint arXiv:2104.11105.

  41. Valencia-Cabrera, L., Pérez-Hurtado, I., & Martínez-del Amor, M. Á. (2020). Simulation challenges in membrane computing. Journal of Membrane Computing, 2(4), 392–402.

    Article  MATH  Google Scholar 

  42. Valencia-Cabrera, L., & Song, B. (2020). Tissue P systems with promoter simulation with MeCoSim and P-Lingua framework. Journal of Membrane Computing, 2(2), 95–107.

    Article  MATH  Google Scholar 

  43. Wang, H., Zhou, K., Zhang, G., Paul, P., Duan, Y., Qi, H., & Rong, H. (2020). Application of weighted Spiking Neural P systems with rules on synapses for breaking RSA encryption. International Journal of Unconventional Computing, 15(1–2), 37–58.

    Google Scholar 

  44. Wang, X., Song, T., Zheng, P., Hao, S., & Ma, T. (2017). Spiking neural P systems with anti-spikes and without annihilating priority. Rammian Journal of Science and Technology, 20(1), 32–41.

    Google Scholar 

  45. Wu, T., & Jiang, S. (2021). Spiking neural P systems with a flat maximally parallel use of rules. Journal of Membrane Computing, 3(3), 221–231.

    Article  MATH  Google Scholar 

  46. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2017). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    Google Scholar 

  47. Yahya, R.I., Shamsuddin, S.M., Yahya, S.I., Hasan, S., Al-Salibi, B., Al-Khafaji, G. (2016). Image segmentation using membrane computing: a literature survey. In: International Conference on Bio-Inspired Computing: Theories and Applications, Springer, 314–335.

  48. Zandron, C., Ferretti, C., Mauri, G. (2001). Solving NP-complete problems using P systems with active membranes. In: Unconventional Models of Computation, UMC’2K, Springer, 289–301.

  49. Zhang, G., Zhang, X., Rong, H., Paul, P., Zhu, M., Neri, F., Ong, Y.S. (2022). A layered spiking neural system for classification problems. International Journal of Neural Systems, 2250023.

  50. Zhang, X., & Liu, X. (2022). Multiview clustering of adaptive sparse representation based on coupled P systems. Entropy, 24(4), 568.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Regional Development Fund, Competitiveness Operational Program 2014–2020 through project IDBC (code SMIS 2014+: 121512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail-Iulian Plesa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plesa, MI., Gheoghe, M., Ipate, F. et al. A key agreement protocol based on spiking neural P systems with anti-spikes. J Membr Comput 4, 341–351 (2022). https://doi.org/10.1007/s41965-022-00110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00110-9

Keywords