Skip to main content
Log in

Migration strategy in distributed adaptive optimization spiking neural P systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

The distributed adaptive optimization spiking neural P systems (DAOSNPS) are membrane optimization algorithms which does not depend on evolutionary algorithms or swarm intelligence algorithms. It is acknowledged that population structure is very important to enhance the performance of the original optimization algorithms. In this paper, a proper migration strategy including dynamic migration interval is proposed to boost the performance of DAOSNPS. More specifically, first of all, the dynamic migration interval is introduced to speed up the convergence. Furthermore, the number of subpopulations and the migration size are discussed to select the appropriate number of subpopulations and the migration size to balance the exploration and exploitation ability. Finally, two strategies of migration individual selection and replacement individual selection are analyzed and compared in DAOSNPS. The extensive experimental results on the 0/1 knapsack problem show that DAOSNPS with the dynamic migration interval can effectively decrease time consumption. The appropriate migration strategy can obtain better balance in terms of the quality of convergence and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pan, L., Păun, G., & Zhang, G. (2019). Foreword: Starting JMC. Journal of Membrane Computing, 1(1), 1–2.

    Article  Google Scholar 

  2. Zhang, G. (2021). Membrane computing. International Journal of Parallel, Emergent and Distributed Systems, 36(1), 1–2.

    Article  Google Scholar 

  3. Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2017). Real-life applications with membrane computing. Springer.

    Book  MATH  Google Scholar 

  4. Zhang, G., Shang, Z., Verlan, S., Martínez-Amor, M., Yuan, C., Valencia-Cabrer, L., & Pérez-Jiménez, M. J. (2020). An overview of hardware implementation of membrane computing models. ACM Computing Surveys, 53(4), 1–38.

    Google Scholar 

  5. Rong, H., Duan, Y., & Zhang, G. (2022). A bibliometric analysis of membrane computing (1998–2019). Journal of Membrane Computing, 4(2), 177–207.

    Article  Google Scholar 

  6. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MATH  Google Scholar 

  7. Pan, L., & Zhang, G. (2010). A survey of membrane computing as a new branch of natural computing. Chinese Journal of Computers, 33(2), 1–9.

    Article  Google Scholar 

  8. Manca, V., & Bianco, L. (2008). Biological networks in metabolic P systems. Bio Systems, 91(3), 489–498.

    Article  Google Scholar 

  9. Frisco, P., & Gheorghe, M. (2013). Applications of membrane computing in systems and synthetic biology. Springer.

    Google Scholar 

  10. Ciobanu, G., Pérez-Jiménez, M. J., & Păun, G. (2006). Applications of membrane computing. Springer.

    Google Scholar 

  11. Wang, X., Zhang, G., Gou, X., Paul, P., Neri, F., Rong, H., Yang, Q., & Zhang, H. (2021). Multi-behaviors coordination controller design with enzymatic numerical P systems for robots. Integrated Computer Aided Engineering, 28(2), 119–140.

    Article  Google Scholar 

  12. Li, B., Peng, H., & Wang, J. (2021). A novel fusion method based on dynamic threshold neural P systems and nonsubsampled contourlet transform for multi-modality medical images. Signal Processing the Official Publication of the European Association for Signal Processing, 178, 107793.

    Google Scholar 

  13. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006.

    Article  Google Scholar 

  14. Zhu, M., Yang, Q., Dong, J., Zhang, G., & Neri, F. (2021). An adaptive optimization spiking neural P system for binary problems. International Journal of Neural Systems, 31(1), 2050054.

    Article  Google Scholar 

  15. Dong, J., Zhang, G., Luo, B., Yang, Q., Guo, D., Rong, H., Zhu, M., & Zhou, K. (2022). A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems. Information Sciences, 596(1), 1–14.

    Article  Google Scholar 

  16. Wang, T., Zhang, G. X., Zhao, J. B., He, Z. Y., Wang, J., & Pérez-Jiménez, M. J. (2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  17. Wu, T., Pan, L., Yu, Q., & Tan, K. (2020). Numerical spiking neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 1–15.

    Article  Google Scholar 

  18. Păun, A., & Păun, G. (2002). The power of communication: P systems with symport/antiport. New Generation Computing, 20(3), 295–305.

    Article  MATH  Google Scholar 

  19. Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2011). Spiking neural P systems with neuron division and budding. Science China Information Sciences, 54(8), 1596–1607.

    Article  MATH  Google Scholar 

  20. Pan, L., Zhang, Z., Wu, T., & Xu, J. (2017). Numerical P systems with production thresholds. Theoretical Computer Science, 673, 30–41.

    Article  MATH  Google Scholar 

  21. Pan, L., Orellana-Martín, D., Song, B., & Pérez-Jiménez, M. J. (2019). Cell-like P systems with polarizations and minimal rules. Theoretical Computer Science, 816, 1–18.

    Article  MATH  Google Scholar 

  22. Freund, R., Păun, G., & Pérez-Jiménez, M. J. (2005). Tissue P systems with channel states. Theoretical Computer Science, 330(1), 101–116.

    Article  MATH  Google Scholar 

  23. Song, B., Zhang, C., & Pan, L. (2017). Tissue-like P systems with evolutional symport/antiport rules. Information Sciences: An International Journal, 378, 177–193.

    Article  MATH  Google Scholar 

  24. Zhang, G., Zhang, X., Rong, H., Paul, P., Zhu, M., Neri, F., & Ong, Y. (2022). A layered spiking neural system for classification problems. International Journal of Neural Systems, 32(8), 2250023.

    Article  Google Scholar 

  25. Zhang, G., Pérez-Jiménez, M. J., Riscos-Núñez, A., Verlan, S., Konur, S., Hinze, T., & Gheorghe, M. (2021). Membrane computing models: Implementations. Springer.

    Book  Google Scholar 

  26. Zhang, G., Rong, H., Paul, P., He, Y., Neri, F., & Pérez-Jiménez, M. J. (2021). A complete arithmetic calculator constructed from spiking neural p systems and its application to information fusion. International Journal of Neural Systems, 31(1), 2050055.

    Article  Google Scholar 

  27. Zhang, G., Cheng, J., Gheorghe, M., & Meng, Q. (2013). A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing, 13(3), 1528–1542.

    Article  Google Scholar 

  28. Zhang, G., Gheorghe, M., & Wu, C. (2008). A quantum-inspired evolutionary algorithm based on P systems for knapsack problem. Fundamenta Informaticae, 87(1), 93–116.

    MATH  Google Scholar 

  29. Weber, M., Tirronen, V., & Neri, F. (2010). Scale factor inheritance mechanism in distributed differential evolution. Soft Computing, 14(11), 1187–1207.

    Article  Google Scholar 

  30. Weber, M., Neri, F., & Tirronen, V. (2013). A study on scale factor/crossover interaction in distributed differential evolution. Artificial Intelligence Review, 39(3), 195–224.

    Article  Google Scholar 

  31. Cheng, J., Zhang, G., & Neri, F. (2013). Enhancing distributed differential evolution with multicultural migration for global numerical optimization. Information Sciences, 247(1), 72–93.

    Article  MATH  Google Scholar 

  32. Yang, S., & Tinós, R. (2007). A hybrid immigrants scheme for genetic algorithms in dynamic environments. International Journal of Automation and Computing, 4(3), 243–254.

    Article  Google Scholar 

  33. Zaharie, D., & Petcu, D. (2003). Parallel implementation of multi-population differential evolution. In Proceedings of the 2nd workshop on concurrent information processing and computing (pp. 223–232).

  34. Apolloni, J., Leguizamon, G., García-Nieto, J., & Alba, E. (2008). Island based distributed differential evolution: An experimental study on hybrid test beds. In Proceedings of the 8th international conference on hybrid intelligent systems (pp. 696–701).

  35. Cantú-Paz, E. (2001). Migration policies, selection pressure, and parallel evolutionary algorithms. Journal of Heuristics, 7(4), 311–344.

    Article  MATH  Google Scholar 

  36. Araujo, L., & Merelo, J. (2011). Diversity through multiculturality: Assessing migrant choice policies in an island model. IEEE Transactions on Evolutionary Computation, 15(4), 456–469.

    Article  Google Scholar 

  37. Weber, M., Neri, F., & Tirronen, V. (2010). Island based distributed differential evolution: an experimental study on hybrid test beds. Applications of evolutionary computing, EvoWorkshops, lecture notes in computer science (Vol. 6024, pp. 471–480). Springer.

    Chapter  Google Scholar 

  38. Mc Ginley, B., Maher, J., O’Riordan, C., & Morgan, F. (2011). Maintaining healthy population diversity using adaptive crossover, mutation, and selection. IEEE Transactions on Evolutionary Computation, 15(5), 692–714.

    Article  Google Scholar 

  39. Han, K., & Kim, J. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 6(6), 580–593.

    Article  Google Scholar 

  40. Zhang, G., Gheorghe, M., & Li, Y. (2012). A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Natural Computing, 11(4), 701–717.

    Article  MATH  Google Scholar 

  41. Zhang, G. (2011). Quantum-inspired evolutionary algorithms: A survey and empirical study. Journal of Heuristics, 17(3), 303–351.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61972324, 61672437, 61702428), the Sichuan Science and Technology Program (2021YFS0313, 2021YFG0133, 2021YJ0086, 2022YFG0181, 23NSFTD0049, 23ZDYF0247), and Chengdu Technological Innovation Development Project (2022-YF05-01134-SN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Zhang, G., Xiao, D. et al. Migration strategy in distributed adaptive optimization spiking neural P systems. J Membr Comput 4, 314–328 (2022). https://doi.org/10.1007/s41965-022-00117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00117-2

Keywords

Navigation