Skip to main content
Log in

Cancer gene selection with adaptive optimization spiking neural P systems and hybrid classifiers

  • Research Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

The selection of disease-causing genes from gene expression and methylation data is a great benefit for cancer diagnosis and treatment, but it also faces the limitations due to single classifier addressing different datasets and exponential growth in search space. To address the problem, a hybrid filter-wrapper approach, an adaptive optimization spiking neural P systems and hybrid classifier (AOSNPS-HC), is proposed for cancer gene selection in this paper. More specifically, a hybrid classifier consisting of support vector machines and K-nearest neighbors is introduced using the competitive strategy to balance the advantages and disadvantages of the both traditional classifier for a specific gene dataset. At the same time, an adaptive optimization spiking neural P system (AOSNPS) is used to speed up the search of the best gene solution in the exponentially growing search space. Experimental results on six data sets, Leukemia, Colon cancer, SRBCT, Prostate-cancer, Brain Tumors and Lung-cancer, show that AOSNPS-HC is superior to or competitive to ten methods in literature in terms of gene feature and classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5

Similar content being viewed by others

Data availability

The six microarray datasets can be freely obtained at https://file.biolab.si/biolab/supp/bicancer/projections/info/leukemia.html.

Abbreviations

CA::

Classification accuracy

SVM::

Support vector machine

kNN::

K-nearest neighbors

MC::

Membrane computing

References

  1. Paul, A., & Sil, J. (2019). Optimized time-lag differential method for constructing gene regulatory network. Information Sciences, 478, 222–238.

    Google Scholar 

  2. Aziz, R. M., Joshi, A. A., Kumar, K., et al. (2023). Hybrid feature selection techniques utilizing soft computing methods for cancer data. Computational and analytic methods in biological sciences (pp. 23–39). River Publishers.

    Google Scholar 

  3. Singhal, S., Usmani, N., Michiels, S., et al. (2016). Towards understanding the breast cancer epigenome: A comparison of genome-wide DNA methylation and gene expression data. Oncotarget, 7(3), 3002.

    Google Scholar 

  4. Golub, T., Slonim, D., Tamayo, P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.

    Google Scholar 

  5. Venkataramana, L., Jacob, S., Ramadoss, R., et al. (2019). Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data. Genes & Genomics, 41, 1301–1313.

    Google Scholar 

  6. Salem, H., Attiya, G., & El-Fishawy, N. (2017). Classification of human cancer diseases by gene expression profiles. Applied Soft Computing, 50, 124–134.

    Google Scholar 

  7. Afreen, S., Bhurjee, A. K., & Aziz, R. M. (2023). Gene selection with game Shapley Harris hawks optimizer for cancer classification. Chemometrics and Intelligent Laboratory Systems, 242, 104989.

    Google Scholar 

  8. Osama, S., Shaban, H., & Ali, A. (2022). Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: A comprehensive review. Expert Systems with Applications, 213, 118946.

    Google Scholar 

  9. Tuo, S., Liu, F., Feng, Z., et al. (2022). Membrane computing with harmony search algorithm for gene selection from expression and methylation data. Journal of Membrane Computing, 4(4), 293–313.

    MathSciNet  Google Scholar 

  10. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.

    Google Scholar 

  11. Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. (2018). Metaheuristic algorithms: A comprehensive review. Computational intelligence for multimedia big data on the cloud with engineering applications (pp. 185–231). Elsevier.

    Google Scholar 

  12. Uzma, Al-Obeidat., F., Tubaishat, A., et al. (2020). Gene encoder: A feature selection technique through unsupervised deep learning-based clustering for large gene expression data. Neural Computing and Applications, 34, 8309–8331.

    Google Scholar 

  13. Shukla, A., Singh, P., & Vardhan, M. (2020). Gene selection for cancer types classification using novel hybrid metaheuristics approach. Swarm and Evolutionary Computation, 54, 100661.

    Google Scholar 

  14. Li, Z., Liao, B., Cai, L., et al. (2018). Semi-supervised maximum discriminative local margin for gene selection. Scientific Reports, 8(1), 8619.

    Google Scholar 

  15. Shukla, A., Singh, P., & Vardhan, M. (2019). A new hybrid wrapper tlbo and sa with svm approach for gene expression data. Information Sciences, 503, 238–254.

    MathSciNet  Google Scholar 

  16. Alomari, O., Makhadmeh, S., Al-Betar, M., Alyasseri, Z., Doush, I., Abasi, A., Awadallah, M., et al. (2021). Gene selection for microarray data classification based on gray wolf optimizer enhanced with triz-inspired operators. Knowledge-Based Systems, 223, 107034.

    Google Scholar 

  17. Chatra, K., Kuppili, V., Edla, D., et al. (2019). Cancer data classification using binary bat optimization and extreme learning machine with a novel fitness function. Medical & Biological Engineering & Computing, 57, 2673–2682.

    Google Scholar 

  18. Alzaqebah, M., Briki, K., Alrefai, N., et al. (2021). Memory based cuckoo search algorithm for feature selection of gene expression dataset. Informatics in Medicine Unlocked, 24, 100572.

    Google Scholar 

  19. Wang, H., Jing, X., & Niu, B. (2017). A discrete bacterial algorithm for feature selection in classification of microarray gene expression cancer data. Knowledge-Based Systems, 126, 8–19.

    Google Scholar 

  20. Alharthi, A., Lee, M., & Algamal, Z. (2021). Gene selection and classification of microarray gene expression data based on a new adaptive l1-norm elastic net penalty. Informatics in Medicine Unlocked, 24, 100622.

    Google Scholar 

  21. Haznedar, B., Arslan, M., & Kalinli, A. (2021). Optimizing anfis using simulated annealing algorithm for classification of microarray gene expression cancer data. Medical & Biological Engineering & Computing, 59, 497–509.

    Google Scholar 

  22. Grisci, B., Feltes, B., & Dorn, M. (2019). Neuroevolution as a tool for microarray gene expression pattern identification in cancer research. Journal of Biomedical Informatics, 89, 122–133.

    Google Scholar 

  23. Inza, I., Larranaga, P., Blanco, R., et al. (2004). Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine, 31(2), 91–103.

    Google Scholar 

  24. Lazar, C., Taminau, J., Meganck, S., et al. (2012). A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1106–1119.

    Google Scholar 

  25. Mundra, P., & Rajapakse, J. (2009). Svm-rfe with mrmr filter for gene selection. IEEE Transactions on Nanobioscience, 9(1), 31–37.

    Google Scholar 

  26. El Akadi, A., Amine, A., El Ouardighi, A., et al. (2011). A two-stage gene selection scheme utilizing mrmr filter and ga wrapper. Knowledge and Information Systems, 26, 487–500.

    Google Scholar 

  27. Wah, Y., Ibrahim, N., Hamid, H., et al. (2018). Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy. Pertanika Journal of Science & Technology, 26(1), 329–340.

    Google Scholar 

  28. Maldonado, R. . S., & Weber. (2009). A wrapper method for feature selection using support vector machines. Information Sciences, 179(13), 2208–2217.

    Google Scholar 

  29. Rodriguez-Galiano, V., Luque-Espinar, J., Chica-Olmo, M., et al. (2018). Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Science of the Total Environment, 624, 661–672.

    Google Scholar 

  30. Nnamoko, N., Arshad, F., England, D., Vora, J., et al. (2014). Evaluation of filter and wrapper methods for feature selection in supervised machine learning. Age, 21(81), 33–2.

    Google Scholar 

  31. González, J., Ortega, J., Damas, M., et al. (2019). A new multi-objective wrapper method for feature selection-accuracy and stability analysis for bci. Neurocomputing, 333, 407–418.

    Google Scholar 

  32. Shukla, A., Singh, P., & Vardhan, M. (2018). A hybrid gene selection method for microarray recognition. Biocybernetics and Biomedical Engineering, 38(4), 975–991.

    Google Scholar 

  33. Alshamlan, H., Badr, G., Alohali, Y., et al. (2015). mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed Research International. https://doi.org/10.1155/2015/604910

    Article  Google Scholar 

  34. Deng, X., Li, M., Deng, S., et al. (2022). Hybrid gene selection approach using xgboost and multi-objective genetic algorithm for cancer classification. Medical & Biological Engineering & Computing, 60(3), 663–681.

    Google Scholar 

  35. Dabba, A., Tari, A., Meftali, S., et al. (2021). Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Systems with Applications, 166, 114012.

    Google Scholar 

  36. Ang, J., Mirzal, A., Haron, H., et al. (2015). Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(5), 971–989.

    Google Scholar 

  37. Jain, I., Jain, V., & Jain, R. (2018). Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification. Applied Soft Computing, 62, 203–215.

    Google Scholar 

  38. Oh, I., Lee, J., & Moon, B. (2004). Hybrid genetic algorithms for feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11), 1424–1437.

    Google Scholar 

  39. Nouri-Moghaddam, B., Ghazanfari, M., & Fathian, M. (2023). A novel bio-inspired hybrid multi-filter wrapper gene selection method with ensemble classifier for microarray data. Neural Computing and Applications, 35(16), 11531–11561.

    Google Scholar 

  40. Alhenawi, E., Al-Sayyed, R., Hudaib, A., et al. (2022). Feature selection methods on gene expression microarray data for cancer classification: A systematic review. Computers in Biology and Medicine, 140, 105051.

    Google Scholar 

  41. Aziz, R. (2022). Nature-inspired metaheuristics model for gene selection and classification of biomedical microarray data. Medical & Biological Engineering & Computing, 60(6), 1627–1646.

    Google Scholar 

  42. Aziz, R. M., Mahto, R., Das, A., et al. (2023). Co-woa: Novel optimization approach for deep learning classification of fish image. Chemistry & Biodiversity, 20(8), 202201123.

    Google Scholar 

  43. Elkhani, N., & Muniyandi, R. (2017). Membrane computing inspired feature selection model for microarray cancer data. Intelligent Data Analysis, 21(S1), 137–157.

    Google Scholar 

  44. Elkhani, N., & Muniyandi, R. (2015) Membrane computing to model feature selection of microarray cancer data. In: Proceedings of the ASE BigData & SocialInformatics 2015, pp. 1–9

  45. Zhang, G., Prez-Jimnez, M. J., & Gheorghe, M. (2017). Real-life applications with membrane computing. Singapore: Springer.

    Google Scholar 

  46. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    MathSciNet  Google Scholar 

  47. Zhang, G., Pérez-Jiménez, M. J., Riscos-Núñez, A., Verlan, S., Konur, S., Hinze, T., & Gheorghe, M. (2021). Membrane computing models: implementations. Singapore: Springer.

    Google Scholar 

  48. Leporati, A., Manzoni, L., Mauri, G., et al. (2020). A turing machine simulation by P systems without charges. Journal of Membrane Computing, 2(2), 71–9.

    MathSciNet  Google Scholar 

  49. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., et al. (2019). Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. Journal of Membrane Computing, 1(1), 1–2.

    MathSciNet  Google Scholar 

  50. Pan, L., Orellana-Martín, D., Song, B., et al. (2020). Cell-like P systems with polarizations and minimal rules. Theoretical Computer Science, 816, 1–18.

    MathSciNet  Google Scholar 

  51. Freund, R., Păun, G., & Pérez-Jiménez, M. (2005). Tissue P systems with channel states. Theoretical Computer Science, 330(1), 101–116.

    MathSciNet  Google Scholar 

  52. Song, B., Pan, L., & Pérez-Jiménez, M. (2016). Tissue P systems with protein on cells. Fundamenta Informaticae, 144(1), 77–107.

    MathSciNet  Google Scholar 

  53. Song, B., Zhang, C., & Pan, L. (2017). Tissue-like P systems with evolutional symport/antiport rules. Information Sciences, 378, 177–193.

    MathSciNet  Google Scholar 

  54. Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(8), 270–278.

    MathSciNet  Google Scholar 

  55. Zhang, X., Zeng, X., Pan, L., et al. (2009). A spiking neural P system for performing multiplication of two arbitrary natural numbers. Chinese Journal of Computers, 32(12), 2362–2372.

    MathSciNet  Google Scholar 

  56. Zeng, X., Lu, C., & Pan, L. (2010). A weakly universal spiking neural P system. Mathematical and Computer Modelling, 52(11–12), 1940–1946.

    MathSciNet  Google Scholar 

  57. Ren, T., Cabarle, F., & Adorna, H. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(8), 161–177.

    MathSciNet  Google Scholar 

  58. Ren, T., Cabarle, F., Macababayao, I., et al. (2021). Homogeneous spiking neural P systems with structural plasticity. Journal of Membrane Computing, 3(1), 1–12.

    MathSciNet  Google Scholar 

  59. Huang, L., He, X., Wang, N., et al. (2007). P systems based multi-objective optimization algorithm. Progress in Natural Science, 17(4), 458–465.

    MathSciNet  Google Scholar 

  60. Kociecki, M., & Adeli, H. (2013). Two-phase genetic algorithm for size optimization of free form steel space-frame roof structures. Journal of Constructional Steel Research, 90(9), 283–296.

    Google Scholar 

  61. Zhang, G., Cheng, J., Gheorghe, M., et al. (2013). A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing, 13(3), 1528–1542.

    Google Scholar 

  62. Zhang, G., Rong, H., Neri, F., et al. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(5), 1440006–0116.

    Google Scholar 

  63. Zhu, M., Yang, Q., Dong, J., et al. (2020). An adaptive optimization spiking neural P system for binary problems. International Journal of Neural Systems, 31(1), 2050054.

    Google Scholar 

  64. Dong, J., Zhang, G., Luo, B., et al. (2022). A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems. Information Sciences, 596(1), 1–14.

    Google Scholar 

  65. Dong, J., Zhang, G., Luo, B., et al. (2023). An optimization numerical spiking neural P system for solving constrained optimization problems. Information Sciences, 626(1), 428–456.

    Google Scholar 

  66. Dong, J., Zhang, G., Xiao, D., et al. (2022). Migration strategy in distributed adaptive optimization spiking neural p systems. Journal of Membrane Computing, 4(4), 314–328.

    MathSciNet  Google Scholar 

  67. Dong, J., Zhang, G., Luo, B., et al. (2022). Multi-learning rate optimization spiking neural p systems for solving the discrete optimization problems. Journal of Membrane Computing, 4(3), 209–221.

    MathSciNet  Google Scholar 

  68. Lee Rodgers, J., & Nicewander, W. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.

    Google Scholar 

  69. Noble, W. (2006). What is a support vector machine? Nature biotechnology, 24(12), 1565–1567.

    Google Scholar 

  70. Huang, S., Cai, N., Pacheco, P., et al. (2018). Applications of support vector machine (svm) learning in cancer genomics. Cancer Genomics & Proteomics, 15(1), 41–51.

    Google Scholar 

  71. Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003) Knn model-based approach in classification. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings, pp. 986–996

  72. Xing, W., & Bei, Y. (2019). Medical health big data classification based on knn classification algorithm. IEEE Access, 8, 28808–28819.

    Google Scholar 

  73. Chang, C., Landis, M., & Yu, S. (2011) Investing in accounting: A call for professional involvement in higher education

  74. Wang, A., An, N., Yang, J., et al. (2017). Wrapper-based gene selection with Markov blanket. Computers in Biology and Medicine, 81, 11–23.

    Google Scholar 

  75. Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2015). Distributed feature selection: An application to microarray data classification. Applied Soft Computing, 30, 136–150.

    Google Scholar 

  76. Waghmare, G. (2013). Comments on “a note on teaching-learning-based optimization algorithm’’. Information Sciences, 229, 159–169.

    Google Scholar 

  77. Mollaee, M., & Moattar, M. (2016). A novel feature extraction approach based on ensemble feature selection and modified discriminant independent component analysis for microarray data classification. Biocybernetics and Biomedical Engineering, 36(3), 521–529.

    Google Scholar 

  78. Medjahed, S., Saadi, T., Benyettou, A., et al. (2017). Kernel-based learning and feature selection analysis for cancer diagnosis. Applied Soft Computing, 51, 39–48.

    Google Scholar 

  79. Wang, A., An, N., Chen, G., et al. (2015). Accelerating wrapper-based feature selection with k-nearest-neighbor. Knowledge-Based Systems, 83, 81–91.

    Google Scholar 

  80. Chuang, L., Yang, C., & Yang, C. (2009). Tabu search and binary particle swarm optimization for feature selection using microarray data. Journal of Computational Biology, 16(12), 1689–1703.

    MathSciNet  Google Scholar 

  81. Apolloni, J., Leguizamón, G., & Alba, E. (2016). Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Applied Soft Computing, 38, 922–932.

    Google Scholar 

  82. Ke, L., Li, M., Wang, L., et al. (2023). Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification. Pattern Analysis and Applications, 26(2), 455–472.

    Google Scholar 

  83. Xie, W., Wang, L., Yu, K., et al. (2023). Improved multi-layer binary firefly algorithm for optimizing feature selection and classification of microarray data. Biomedical Signal Processing and Control, 79, 104080.

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61972324), Sichuan Science and Technology Program (2023NSFSC1985, 2023YFG0046, 2022YFG0181) and Research Fund of Chengdu University of Information Technology (KYTZ202149, KYTD202212)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Dong, J., Zhang, G. et al. Cancer gene selection with adaptive optimization spiking neural P systems and hybrid classifiers. J Membr Comput 5, 238–251 (2023). https://doi.org/10.1007/s41965-023-00133-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-023-00133-w

Keywords

Navigation