Skip to main content
Log in

A bibliometric survey on incremental clustering algorithm for electricity smart meter data analysis

  • Review Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Smart meters (SMs) are an electronic device for recording customer energy consumption in the time intervals of an hour or less. The use of SMs incurs benefits to people in various aspects such as environmental, social, and economical. SMs frequently communicate with utility companies for monitoring and management of energy usage as well as with customers for observing their energy consumption. It generates a considerable amount of electricity smart meter data incrementally. In the clustering task, instead of re-clustering all data from scratch on the influx of new data, it is better to update clustering result incrementally based on new as well as old data. Thus, an incremental clustering approach is an essential way to overcome the issue related to clustering with growing data. The purpose of the paper is to dig out all the researches in smart meter data analytics and incremental clustering to make the concept clear for future researchers. This bibliometric analysis is implemented using the repositories such as Scopus, Google Scholar, ResearchGate, and the tools like Gephi, Table2Net, and GPS Visualizer, etc. The study revealed that the maximum number of the reviews on smart meter and incremental clustering had explored very recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Source: https://www.scopus.com/ (accessed on 19 Nov 2018)

Fig. 10

Source: https://www.scopus.com/ (accessed on 19 Nov 2018)

Fig. 11

Source: https://www.scopus.com/ (accessed on 19 Nov 2018)

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chaudhari, A.A., Mulay, P.: SCSI: real-time data analysis with cassandra and spark. In: Mittal, M., Balas, V.E., Goyal, L.M., Kumar, R. (eds.) Big Data Processing Using Spark in Cloud, pp. 237–264. Springer Singapore, Singapore (2019)

    Chapter  Google Scholar 

  2. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm and its applications. Data Min. Knowl. Discov. 1, 141–182 (1997)

    Article  Google Scholar 

  3. Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A., et al.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2, 267–280 (2014)

    Article  Google Scholar 

  4. Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artif. Intell. 40, 11–61 (1989)

    Article  Google Scholar 

  5. Mulani, N., Pawar, A., Mulay, P., Dani, A.: Variant of COBWEB clustering for privacy preservation in cloud DB querying. Procedia Comput. Sci. 50, 363–368 (2015)

    Article  Google Scholar 

  6. Satyanarayana, A., Acquaviva, V.: Enhanced cobweb clustering for identifying analog galaxies in astrophysics. In: IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4. Toronto, ON (2014). https://doi.org/10.1109/CCECE.2014.6901030

  7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U. (eds.) Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96), pp. 226–231. AAAI Press (1996)

  8. Sharan, R., Elkon, R., Shamir, R.: Cluster analysis and its applications to gene expression data. In: Mewes, H.W., Seidel, H., Weiss, B. (eds.) Bioinformatics and Genome Analysis. Ernst Schering Research Foundation Workshop, vol. 38, pp. 83–108. Springer, Berlin, Heidelberg (2002)

    Google Scholar 

  9. Bryant, A., Cios, K.: RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Trans. Knowl. Data Eng. 5, 1–14 (2017)

    Google Scholar 

  10. Moon, T.K.: The expectation–maximization algorithm. IEEE Signal Process. Mag. 13, 47–60 (1996)

    Article  Google Scholar 

  11. Yu, J., Chaomurilige, C., Yang, M.S.: On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures. Pattern Recogn. 77, 188–203 (2018)

    Article  Google Scholar 

  12. Pham, D.T., Dimov, S.S., Nguyen, C.D.: An Incremental K-means algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218, 783–795 (2004)

    Article  Google Scholar 

  13. Mulay, P., Kulkarni, P.A.: Evolving systems using incremental clustering approach. Evol. Syst. 4, 70–85 (2013)

    Google Scholar 

  14. Mulay, P.A.K.: Knowledge augmentation via incremental clustering: new technology for effective knowledge management. Int. J. Bus. Inf. Syst. 12, 68–87 (2013)

    Google Scholar 

  15. Mulay, P., Shinde, K.: CBICA: correlation based incremental clustering algorithm. IJCTA 10, 575–582 (2017)

    Google Scholar 

  16. Garg, A., Mangla, A., Gupta, N., Bhatnagar, V.: PBIRCH: a scalable parallel clustering algorithm for incremental data. In: Presented at the 10th International Database Engineering and Applications Symposium (IDEAS’06), pp. 315–316. Delhi, India (2006)

  17. Lorbeer, B., Kosareva, A., Deva, B., Softić, D., Ruppel, P., Küpper, A.: Variations on the clustering algorithm BIRCH. Big Data Res. 11, 44–53 (2018)

    Article  Google Scholar 

  18. Dinger, S.C., Van Wyk, M.A., Carmona, S., Rubin, D.M.: Clustering gene expression data using a diffraction-inspired framework. Biomedical Engineering Online 11, 85 (2012)

    Article  Google Scholar 

  19. Ren, Y., Liu, X.D., Liu, W.Q.: DBCAMM: a novel density based clustering algorithm via using the Mahalanobis metric. Appl. Soft Comput. 12, 1542–1554 (2012)

    Article  Google Scholar 

  20. Ienco, D., Bordogna, G.: Fuzzy extensions of the DBScan clustering algorithm. Soft. Comput. 22, 1719–1730 (2018)

    Article  Google Scholar 

  21. Shao, J., Tanner, S.W., Thompson, N., Cheatham, T.E.: Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput. 3, 2312–2334 (2007)

    Article  Google Scholar 

  22. Sharma, N., Bajpai, A., Litoriya, R.: Comparison the various clustering algorithms of weka tools. Int. J. Emerg. Technol. Adv. Eng. 2, 73–80 (2012)

    Google Scholar 

  23. Evangelidis, G.D., Horaud, R.: Joint alignment of multiple point sets with batch and incremental expectation–maximization. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1397–1410 (2018)

    Article  Google Scholar 

  24. Chakraborty, S., Nagwani, N.K.: Analysis and study of incremental k-means clustering algorithm. In: Mantri, A., Nandi, S., Kumar, G., Kumar, S. (eds.) High Performance Architecture and Grid Computing. HPAGC 2011. Communications in Computer and Information Science, vol. 169, pp. 338–341. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  25. Lei, Z., Liao, J., Li, D., Wu, L.: Event detection and tracking based on improved incremental k-means and transductive SVM. In: Huang, D.S., Wunsch, D.C., Levine, D.S., Jo, K.H. (eds.) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science, vol. 5227, pp. 872–879. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  26. Aaron, B., Tamir, D.E., Rishe, N.D., Kandel, A.: Dynamic incremental K-means clustering. In: International Conference on Computational Science and Computational Intelligence, pp 308–313 (2014). https://doi.org/10.1109/csci.2014.60

  27. Zhu, W.,Yu, W., Kan, B., Liu, G.: Smart meter data analytics based on modified streaming k-means. In: 3rd International Conference on Big Data Computing and Communications (BIGCOM), pp. 328–333. Chengdu (2017). https://doi.org/10.1109/BIGCOM.2017.49

  28. Wang, Y., Chen, Q., Hong, T., Kang, C.: Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans. Smart Grid 10, 1 (2018)

    Google Scholar 

  29. Benıtez, I., Quijano, A., Diez, J., Delgado, I.: Dynamic clustering segmentation applied to load profiles of energy consumption from spanish customers. Int. J. Electr. Power Energy Syst. 55, 437–448 (2014)

    Article  Google Scholar 

  30. Chicco, G.: Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42, 68–80 (2012)

    Article  Google Scholar 

  31. Hong, T., Pinson, P., Fan, S.: Global energy forecasting competition 2012. Int. J. Forecast. 30, 357–363 (2014)

    Article  Google Scholar 

  32. Wang, Q.C.Y., Kang, C., Zhang, M., Wang, K., Zhao, Y.: Load profiling and its application to demand response: a review. Tsinghua Sci. Technol. 20, 117–129 (2015)

    Article  Google Scholar 

  33. Zhou, K., Yang, S., Shen, C.: A review of electric load classification in smart grid environment. Renew. Sustain. Energy Rev. 24, 103–110 (2013)

    Article  Google Scholar 

  34. Chelmis, C., Kolte, J., Prasanna, V.: Big data analytics for demand response: clustering over space and time. In: IEEE International Conference on Big Data (Big Data), pp. 2223–2232. Santa Clara, CA (2015). https://doi.org/10.1109/BigData.2015.7364011

  35. Koivisto, M., Heine, P., Mellin, I., Lehtonen, M.: Clustering of connection points and load modeling in distribution systems. IEEE Trans. Power Syst. 28, 1255–1265 (2013)

    Article  Google Scholar 

  36. Varga, E.D., Beretka, S.F., Noce, C., Sapienza, G.: Robust realtime load profile encoding and classification framework for efficient power systems operation. IEEE Trans. Power Syst. 30, 1897–1904 (2015)

    Article  Google Scholar 

  37. Piao, M., Shon, H.S., Lee, J.Y., Ryu, K.H.: Subspace projection method based clustering analysis in load profiling. IEEE Trans. Power Syst. 29, 2628–2635 (2014)

    Article  Google Scholar 

  38. Singleton, C., Haben, S., Grindrod, P.: Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Trans. Smart Grid 7, 136–145 (2016)

    Article  Google Scholar 

  39. Labeeuw, W., Deconinck, G.: Residential electrical load model based on mixture model clustering and markov models. IEEE Trans. Ind. Inform. 9, 1561–1569 (2013)

    Article  Google Scholar 

  40. Sun, Q., Li, H., Ma, Z., Wang, C., Campillo, J., Zhang, Q., et al.: A comprehensive review of smart energy meters in intelligent energy networks. IEEE Internet Things J. 3, 464–479 (2016)

    Article  Google Scholar 

  41. Arora, S., Taylor, J.W.: Forecasting electricity smart meter data using conditional kernel density estimation. Omega 59, 47–59 (2016)

    Article  Google Scholar 

  42. Gaillard, P., Goude, Y., Nedellec, R.: Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting. Int. J. Forecast. 32, 1038–1050 (2016)

    Article  Google Scholar 

  43. Hong, T., Wilson, J., Xie, J.: Long term probabilistic load forecasting and normalization with hourly information. IEEE Trans. Smart Grid 5, 456–462 (2014)

    Article  Google Scholar 

  44. Liu, B., Nowotarski, J., Hong, T., Weron, R.: Probabilistic load forecasting via quantile regression averaging on sister forecasts. IEEE Trans. Smart Grid 8, 730–737 (2017)

    Google Scholar 

  45. Taieb, S.B., Huser, R., Hyndman, R.J., Genton, M.G.: Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression. IEEE Trans. Smart Grid 7, 2448–2455 (2016)

    Article  Google Scholar 

  46. Chitsaz, H., Shaker, H., Zareipour, H., Wood, D., Amjady, N.: Shortterm electricity load forecasting of buildings in microgrids. Energy Build. 99, 50–60 (2015)

    Article  Google Scholar 

  47. Edwards, R.E., New, J., Parker, L.E.: Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build. 49, 591–603 (2012)

    Article  Google Scholar 

  48. Hsiao, Y.H.: Household electricity demand forecast based on context information and user daily schedule analysis from meter data. IEEE Trans. Ind. Inform. 11, 33–43 (2015)

    Article  Google Scholar 

  49. Mocanu, E., Nguyen, P.H., Gibescu, M., Kling, W.L.: Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 6, 91–99 (2016)

    Article  Google Scholar 

  50. Shi, H., Xu, M., Li, R.: Deep learning for household load forecasting—a novel pooling deep RNN. IEEE Trans. Smart Grid 9, 5271–5280 (2017)

    Article  Google Scholar 

  51. Tascikaraoglu, A., Sanandaji, B.M.: Short-term residential electric load forecasting: a compressive spatio-temporal approach. Energy Build. 111, 380–392 (2016)

    Article  Google Scholar 

  52. Kadam, S., Bandyopadhyay, P.K., Patil, Y.: Mapping the field through bibliometric analysis of passenger centric railway transportation. Int. J. Autom. Logist. 2, 349–368 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by “Microsoft Azure: AI for earth”. We would like to thank “Sakal India Foundation” for research scholarship (Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Chaudhari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, A., Mulay, P. A bibliometric survey on incremental clustering algorithm for electricity smart meter data analysis. Iran J Comput Sci 2, 197–206 (2019). https://doi.org/10.1007/s42044-019-00043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-019-00043-0

Keywords