Skip to main content
Log in

Investigation of multiple hop cooperative communication system over time-selective Nakagami-m fading channel

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Real-time communication is affected by practical constraints such as node mobility and imperfect channel state information. Most technical contributions in the area of cooperative communication neglect these practical constraints, thus, assumes ideal propagation scenarios. Such approximations make sense in low-rate systems, but can lead to very false results when examining future high data rate systems. In this work, closed-form expression of pairwise error probability (PEP) is derived for dual hop and multiple hop selective decode-and-forward relaying network over time-selective Nakagami-m fading links. Space–time block code is used in combination with multiple-input multiple-output to achieve the diversity gain along with cooperative diversity. To obtain the optimal source-relay power allocation factors, a mathematical framework has been proposed to improve the performance of the system in the power-constraint situation. Simulation results have been presented for various values of fading severity parameter and channel variance. Results for different node-mobility scenarios are also provided. Results show that the system performance improves by increasing the fading severity parameter and relay-to-destination (RD) channel gain. It is noted that the relaying network’s diversity order (DO) is the same as the non-cooperative network’s DO in a scenario when both source node (SN) and destination nodes (DNs) are static, and relay node (RN) is mobile. Also, if the RN and DN are static and the SN is mobile, DO will be equivalent to zero. At high signal-to-noise ratio (SNR), system performance with equal and optimal energy distribution can be seen approaching an asymptotic floor limit, because system performance independent of the power of the noise components. The effect of mobility of the DN on the average per-block PEP output is less important compared to the mobility of the SN. The scheme is restricted by an asymptotic error floor with a greater SNR regime for other node-mobility situations. The analytical results are verified by Monte Carlo simulations for M-ary signaling maximal ratio combiner cooperative system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vaezi, M., Ding, Z., Vincent Poor, H. (eds.) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham (2019)

    Google Scholar 

  2. Dragičević, T., Siano, P., Prabaharan, S.R.: Future generation 5G wireless networks for smart grid: a comprehensive review. Energies 12(11), 2140 (2019)

    Article  Google Scholar 

  3. Vali Mohamad, N.M., Lakshmanan, M., Palanivelan, M., et al.: Development of an enhanced secured authentication and key agreement procedure for UMTS network. Wirel. Pers. Commun. (2019). https://doi.org/10.1007/s11277-019-06737-9

    Article  Google Scholar 

  4. Amadeo, M., Campolo, C., Molinaro, A., Harri, J., Esteve Rothenberg, C., Vinel, A.: Enhancing the 3GPP V2X architecture with information-centric networking. Future Internet 11(9), 199 (2019)

    Article  Google Scholar 

  5. Prasad, N., Rangarajan, S., Wells, P., Arnott, R.: Analysis and evaluation of a practical downlink multiuser MIMO scheduler over LTE advanced massive MIMO systems. U.S. Patent Application 10/334,616 filed June 25, 2019

  6. Lee, D., Seok, Y., Noh, Y., Moon, S., Cheong, M.: Link adaptation for multi-user transmission in 802.11 systems. U.S. Patent Application 10/257,324 filed April 9, 2019

  7. Bellalta, B., Kosek-Szott, K.: AP-initiated multi-user transmissions in IEEE 802.11 ax WLANs. Ad Hoc Netw. 85, 145–159 (2019)

    Article  Google Scholar 

  8. Zhang, C., Zhou, Z., Liu, P., Gu, B.: Resource allocation for energy harvesting based cognitive machine-to-machine communications. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

  9. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C.B., Hugl, K.: Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)

    Article  Google Scholar 

  10. Hu, X., Cheng, J., Zhou, M., Bin, H., Jiang, X., Guo, Y., Bai, K., Wang, F.: Emotion-aware cognitive system in multi-channel cognitive radio ad hoc networks. IEEE Commun. Mag. 56(4), 180–187 (2018)

    Article  Google Scholar 

  11. Yan, X., Xiao, H., An, K., Zheng, G., Tao, W.: Hybrid satellite terrestrial relay networks with cooperative non-orthogonal multiple access. IEEE Commun. Lett. 22(5), 978–981 (2018)

    Article  Google Scholar 

  12. Gleim, A.V., Kynev, S.M., Egorov, V.I., Chistyakov, V.V., Volkova, K.P., Vasiliev, A.B., Kozubov, A.V., et al.: Subcarrier wave quantum networking for free space communications. In: 2018 International Conference Laser Optics (ICLO), pp. 281–281. IEEE (2018)

  13. Trung, H.D., Tien Hoa, N., Huu Trung, N., Ohtsuki, T.: A closed-form expression for performance optimization of subcarrier intensity QAM signals-based relay-added FSO systems with APD. Phys. Commun. 31, 203–211 (2018)

    Article  Google Scholar 

  14. Liu, H., Ding, Z., Jin Kim, K., Sup Kwak, K., Vincent Poor, H.: Decode-and-forward relaying for cooperative NOMA systems with direct links. IEEE Trans. Wirel. Commun. 17(12), 8077–8093 (2018)

    Article  Google Scholar 

  15. Liu, Xiangli, Li, Zan, Wang, Ce: Secure decode-and-forward relay SWIPT systems with power splitting schemes. IEEE Trans. Veh. Technol. 67(8), 7341–7354 (2018)

    Article  Google Scholar 

  16. Canbilen, A.E., Said Ikki, S., Basar, E., Sinan Gultekin, S., Develi, I.: Impact of I/Q Imbalance on amplify-and-forward relaying: optimal detector design and error performance. IEEE Trans. Commun. 67(5), 3154–3166 (2019)

    Article  Google Scholar 

  17. Zhou, Xiang, Li, Quanzhong: Energy efficiency for SWIPT in MIMO two-way amplify-and-forward relay networks. IEEE Trans. Veh. Technol. 67(6), 4910–4924 (2018)

    Article  Google Scholar 

  18. Shankar, R., Mishra, R.K.: Outage probability analysis of selective-decode and forward cooperative wireless network over time varying fading channels with node mobility and imperfect CSI condition. In: TENCON 2018–2018 IEEE Region 10 Conference, pp. 0508–0513. IEEE (2018)

  19. Varshney, N., Jagannatham, A.K., Hanzo, L.: Asymptotic SER analysis and optimal power sharing for dual-phase and multi-phase multiple-relay cooperative systems. IEEE Access 6, 50404–50423 (2018)

    Article  Google Scholar 

  20. Shankar, R., Mishra, R.K.: An investigation of S-DF cooperative communication protocol over keyhole fading channel. Phys. Commun. 29, 120–140 (2018)

    Article  Google Scholar 

  21. Varshney, N., Vamsi Krishna, A., Jagannatham, A.K.: Selective DF protocol for MIMO STBC based single/multiple relay cooperative communication: end-to-end performance and optimal power allocation. IEEE Trans. Commun. 63(7), 2458–2474 (2015)

    Article  Google Scholar 

  22. Varshney, N., Goel, A., Jagannatham, A.K.: Cooperative communication in spatially modulated MIMO systems. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6. IEEE (2016)

  23. Zhou, Y., Cheng, N., Lu, N., Sherman Shen, X.: Multi-UAV-aided networks: aerial-ground cooperative vehicular networking architecture. IEEE Veh. Technol. Mag. 10(4), 36–44 (2015)

    Article  Google Scholar 

  24. Borsetti, D., Gozálvez, J.: Infrastructure-assisted geo-routing for cooperative vehicular networks. In: 2010 IEEE Vehicular Networking Conference, pp. 255–262. IEEE (2010)

  25. Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)

    Article  Google Scholar 

  26. Ran, B., Boyce, D.: Modeling Dynamic Transportation Networks: An Intelligent Transportation System Oriented Approach. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-80230-0

    Book  MATH  Google Scholar 

  27. Shankar, R., Kumar, I., Kumari, A., Niharika Pandey, K., Mishra, R.K.: Pairwise error probability analysis and optimal power allocation for selective decode-forward protocol over Nakagami-m fading channels. In: 2017 International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), pp. 1–6. IEEE (2017)

  28. Shankar, R., Niharika Pandey, K., Kumari, A., Sachan, V., Mishra, R.K.: C (0) protocol based cooperative wireless communication over Nakagami-m fading channels: PEP and SER analysis at optimal power. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–7. IEEE (2017)

  29. Ubaidulla, P., Aissa, S.: Optimal relay selection and power allocation for cognitive two-way relaying networks. IEEE Wirel. Commun. Lett. 1(3), 225–228 (2012)

    Article  Google Scholar 

  30. Khattabi, Y., Matalgah, M.M.: Conventional and best-relay-selection cooperative protocols under nodes-mobility and imperfect-CSI impacts: BER performance. In: 2015 IEEE Wireless Communications and Networking Conference (WCNC), pp. 105–110. IEEE (2015). https://doi.org/10.1109/wcnc.2015.7127453

  31. Khattabi, Y., Matalgah, M.M.: A low-complexity sub-optimal decoder for OSTBC-based mobile cooperative systems. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6. IEEE (2016). https://doi.org/10.1109/wcnc.2016.7565132

  32. Feteiha, M.F., Hassanein, H.S.: Cooperative vehicular ad-hoc transmission for LTE-A MIMO-downlink using amplify-and-forward relaying. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 4232–4237. IEEE (2013)

  33. Khattabi, Y., Matalgah, M.M.: Improved error performance ZFSTD for high mobility relay-based cooperative systems. Electron. Lett. 52(4), 323–325 (2016). https://doi.org/10.1049/el.2015.3239

    Article  Google Scholar 

  34. Avendi, M.R., Nguyen, H.H.: Differential amplify-and-forward relaying in time-varying Rayleigh fading channels. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 3867–3872. IEEE (2013)

  35. Khattabi, Y.M., Matalgah, M.M.: Alamouti-OSTBC wireless cooperative networks with mobile nodes and imperfect CSI estimation. IEEE Trans. Veh. Technol. 67(4), 3447–3456 (2018). https://doi.org/10.1109/tvt.2017.2786471

    Article  Google Scholar 

  36. Varshney, N., Puri, P.: Performance analysis of decode-and-forward-based mixed MIMO-RF/FSO cooperative systems with source mobility and imperfect CSI. J. Lightwave Technol. 35(11), 2070–2077 (2017)

    Article  Google Scholar 

  37. Boostanimehr, H., Bhargava, V.K.: Outage capacity analysis for OFDM decode-and-forward systems in frequency selective Rayleigh fading channels. IEEE Commun. Lett. 16(6), 937–940 (2012)

    Article  Google Scholar 

  38. Raut, P., Sharma, P.K.: Full-duplex multi-user pair scheduling with time-selective fading and imperfect CSI. In: 2019 National Conference on Communications (NCC), pp. 1–6. IEEE (2019)

  39. Kumar, I., Sachan, V., Shankar, R., Mishra, R.K.: An investigation of wireless S-DF hybrid satellite terrestrial relaying network over time selective fading channel. Traitement du Signal 35(2), 103 (2018)

    Article  Google Scholar 

  40. Baddour, K.E., Beaulieu, N.C.: Autoregressive modeling for fading channel simulation. IEEE Trans. Wirel. Commun. 4(4), 1650–1662 (2005). https://doi.org/10.1109/TWC.2005.850327

    Article  Google Scholar 

  41. Simon, M.K., Alouini, M.-S.: Digital Communication Over Fading Channels, vol. 95. Wiley, New York (2005). https://doi.org/10.1002/0471200697. (Print ISBN:9780471317791 |Online ISBN:9780471200697)

    Book  Google Scholar 

  42. Fulghum, T.L., Molnar, K.J., Duel-Hallen, A.: The Jakes fading model for antenna arrays incorporating azimuth spread. IEEE Trans. Veh. Technol. 51(5), 968–977 (2002). https://doi.org/10.1109/TVT.2002.801742

    Article  Google Scholar 

  43. Kumbhani, B., Kshetrimayum, R.S.: MIMO Wireless Communications Over Generalized Fading Channels. CRC Press, Boca Raton (2017). (ISBN 9781138033009-CAT# K30767)

    Google Scholar 

  44. Shankar, R., Kumar, I., Mishra, R.K.: Pairwise error probability analysis of dual hop relaying network over time selective Nakagami-m fading channel with imperfect CSI and node mobility. Traitement du Signal 36(3), 281–295 (2019). https://doi.org/10.18280/ts.360312

    Article  Google Scholar 

  45. Kumar, A., Raghavan, S.: Broadband SIW cavity-backed triangular-ring-slotted antenna for Ku-band applications. AEU Int. J. Electron. Commun. 87, 60–64 (2018). https://doi.org/10.1016/j.aeue.2018.02.016

    Article  Google Scholar 

  46. Kumar, A., Chaturvedi, D., Raghavan, S.: SIW cavity-backed circularly polarized square ring slot antenna with wide axial-ratio bandwidth. AEU Int. J. Electron. Commun. 1(94), 122–127 (2018). https://doi.org/10.1016/j.aeue.2018.07.004

    Article  Google Scholar 

  47. Li, C., Xu, Y., Xia, J., Zhao, J.: Protecting secure communication under UAV smart attack with imperfect channel estimation. IEEE Access 6, 76395–76401 (2018). https://doi.org/10.1109/ACCESS.2018.2880979

    Article  Google Scholar 

  48. Kumar, A., Raghavan, S.: Bandwidth enhancement of substrate integrated waveguide cavity-backed Bow-tie-complementary-ring-slot antenna using a shorted-via. Defense Sci. J. 68(2), 197–202 (2018). https://doi.org/10.14429/dsj.68.11827

    Article  Google Scholar 

  49. Jeffrey, A., Zwillinger, D. (eds.) Table of Integrals, Series, and Products. Elsevier, Amsterdam (2007)

  50. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. (2014)

  51. Liu, K.J.R., Sadek, A.K., Su, W., Kwasinski, A.: Cooperative Communications and Networking. Cambridge University Press, Cambridge (2009). (ISBN:0521895138 9780521895132)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\( I_{1} \) can be evaluated in terms of the Gauss Hypergeometric function:

For solving \( I_{1} \) let us change the variable by substitution:

$$ \cos^{2} \theta = t. $$
(67)

This leads to

$$ \sin^{2} \theta = 1 - t, $$
(68)
$$ 2\sin \theta \cos \theta \text{d}\theta = - \text{d}t. $$
(69)

Thus, the limits of the integral would change from 0 to 1 and the integrating variable d\( \theta \) changes to

$$ \text{d}\theta = \frac{{ - \text{d}t}}{{2\sqrt t \sqrt {1 - t} }}. $$
(70)

Therefore, \( I_{1} \) can now be expressed as

$$ I_{1} = \frac{a}{\pi }\int\limits_{0}^{1} {\left\{ {\frac{{t^{ - 0.50} (1 - t)^{{m_{SR} {\rm M}^{2} - 0.50}} (4{\rm M}^{2} R_{C} \eta_{SR} )^{{m_{SR} {\rm M}^{2} }} }}{{2\left( {\frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{m_{SR} }} + 4{\rm M}^{2} R_{C} \eta_{SR} - 4{\rm M}^{2} R_{C} \eta_{SR} t} \right)^{{m_{SR} {\rm M}^{2} }} }}} \right\}\text{d}t} . $$
(71)

After rearrangements and mathematical manipulations, this integral given above can be represented in the standard form as

$$ \begin{aligned} {\text{I}}_{1} & = \frac{{\left( {4{\rm M}R_{C} \eta_{SR} } \right)^{{m_{SR} {\rm M}}} }}{{2\pi \left( {4{\rm M}R_{C} \eta_{SR} { + }\frac{{\tilde{\delta }^{2}_{SR} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda_{ \ln }^{2} }}{{m_{SR} }}} \right)^{{m_{SR} {\rm M}}} }} \int\limits_{0}^{ 1} \prod\limits_{n = 1}^{N} \\ & \quad \times {\left\{ {{\text{t}}^{ - 0.50} (1 - t)^{{{\text{m}}_{\text{SR}} {\rm M} - 0.50}} \left( {1 - \frac{{4{\rm M}R_{C} \eta_{SR} }}{{4{\rm M}R_{C} \eta_{SR} { + }\frac{{\tilde{\delta }^{2}_{SR} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda_{ \ln }^{2} }}{{{\text{m}}_{SR} }}}}{\text{t}}} \right)^{{ - {\text{m}}_{\text{SR}} {\rm M}}} } \right\}} \text{d}{\text{t}} .\\ \end{aligned} $$
(72)

The Gauss hypergeometric function defined as,

$$ {}_{2}F_{1} (a,b;c;x) = \frac{{\left| \!{\overline {\, c \,}} \right. }}{{\left| \!{\overline {\, {c - a} \,}} \right. \times \left| \!{\overline {\, a \,}} \right. }}\int\limits_{0}^{1} {t^{b - 1} } (1 - t)^{c - b - 1} (1 - tx)^{ - a} \text{d}t. $$
(73)

Comparing (72) with the definition of the Gauss hypergeometric function given in (73), the parameters \( a,b,c\,{\text{and}}\,x, \) respectively can be obtained as, \( a = m_{SR} {\rm M}^{2} ,\,\,b = 0.50,\,\,c = 1 + m_{SR} {\rm M}^{2} \) and \( x = \frac{{4{\rm M}^{2} R_{C} \eta_{SR} }}{{4{\rm M}^{2} R_{C} \eta_{SR} + \frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{m_{SR} }}}}. \)

Using the identity given in (73) into (72), the \( I_{1} \) can be expressed in the form of Gauss hypergeometric function as,

$$ I_{1} = \frac{a}{\pi } \times \left\{ \begin{aligned} & \frac{{(4{\rm M}^{2} R_{C} \eta_{SR} m_{SR} )^{{m_{SR} {\rm M}^{2} }} \varGamma (m_{SR} {\rm M}^{2} )}}{{2\left( {4{\rm M}^{2} R_{C} \eta_{SR} m_{SR} + P_{S} (\rho_{SR} )^{2(\tau - 1)} b\tilde{\delta }_{SR}^{2} \lambda^{2} } \right)^{{m_{SR} {\rm M}}} \varGamma (m_{SR} {\rm M}^{2} + 1)}} \\ & \quad \times {}_{2}F_{1} \left( {m_{SR} {\rm M}^{2} ,\frac{1}{2};1 + m_{SR} {\rm M}^{2} ;\frac{1}{{1 + \frac{{bP_{S} \tilde{\delta }_{SR}^{2} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{4{\rm M}^{2} R_{C} \eta_{SR} m_{SR} }}}}} \right) \\ \end{aligned} \right\}. $$
(74)

\( I_{2} \) can be evaluated in terms of the Appell hypergeometric function of two variables:

Like the case of \( I_{1} \), to solve \( I_{2} \), let us change the variable by substituting \( \sin^{2} \theta = t/2. \) Further manipulations of this substitution leads to

$$ 2\sin \theta \cos \theta \text{d}\theta = \text{d}t/2, $$
$$ \text{d}\theta = \frac{{\text{d}t}}{{4\sqrt {\frac{t}{2}} \sqrt {1 - \frac{t}{2}} }}, $$

After changing the limits of integration from 0 to 1, \( I_{2} \) can now be expressed as

$$ \begin{aligned} I_{2} & = \frac{c}{\pi }\int\limits_{0}^{1} {\left( {\frac{{m_{SR} {\rm M}^{2} }}{{m_{SR} {\rm M}^{2} + \frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{2R_{C} \eta_{SR} t}}}}} \right)}^{{m_{SR} {\rm M}^{2} }} \frac{{\text{d}t}}{{4\sqrt {\frac{t}{2}} \sqrt {1 - \frac{t}{2}} }} \\ & = \frac{c}{\pi }\int\limits_{0}^{1} {\left( {1 + \frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{2R_{C} \eta_{SR} m_{SR} {\rm M}^{2} t}}} \right)^{{ - m_{SR} {\rm M}^{2} }} } \frac{{\text{d}t}}{{4\sqrt {\frac{t}{2}} \sqrt {1 - \frac{t}{2}} }}. \\ \end{aligned} $$
$$ \,\,\,\,\,\,\, = \frac{c}{{2\sqrt {2\pi } }}\int\limits_{0}^{1} {t^{{m_{SR} {\rm M}^{2} - 1/2}} \left( {t + \frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{m_{SR} {\rm M}^{2} 2R_{C} \eta_{SR} }}} \right)^{{ - m_{SR} {\rm M}^{2} }} } \frac{dt}{{\sqrt {1 - \frac{t}{2}} }}. $$
(75)

The expression above is compared with Appell hypergeometric function of two variables \( x^{\prime} \) and \( y^{\prime}, \) defined as,

$$ \begin{aligned} & {\text{F}}_{\text{A}}^{(1)} (\chi_{1} ;\iota_{1} ,\iota^{\prime}_{1} ;\gamma^{\prime\prime};x^{\prime},y^{\prime}) = \frac{{\varGamma (\gamma^{\prime\prime})}}{{\varGamma (\chi_{1} )\varGamma (\gamma^{\prime\prime} - \chi_{1} )}}\\ &\quad \int\limits_{0}^{1} {\varTheta^{{\chi_{1} - 1}} \left( {1 - \varTheta } \right)^{{\gamma^{\prime\prime} - \chi_{1} - 1}} \left( {1 - \varTheta x^{\prime}} \right)^{{ - \iota_{1} }} } \left( {1 - \varTheta y^{\prime}} \right)^{{ - \iota^{\prime}_{1} }} \text{d}\varTheta . \end{aligned} $$
(76)

Thus, comparing the integral \( I_{2} \) with the above definition of Appell hypergeometric function various parameters can be obtained as,

$$ \begin{aligned} & \chi_{1} = m_{SR} {\rm M}^{2} + \frac{1}{2},\iota_{1} = \frac{1}{2},\iota^{\prime}_{1} = m_{SR} {\rm M}^{2} ,\gamma^{\prime\prime} = m_{SR} {\rm M}^{2} + \frac{3}{2},x^{\prime} = \frac{1}{2}\,{\text{and}} \\ & y^{\prime} = \frac{{ - m_{SR} {\rm M}^{2} 2R_{C} \eta_{SR} t}}{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}, \\ & I_{2} = \frac{c}{{2\sqrt {2\pi } }}\left( {\frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{2R_{C} \eta_{SR} m_{SR} {\rm M}^{2} }}} \right)^{{m_{SR} {\rm M}^{2} }} \frac{{\varGamma \left( {m_{SR} {\rm M}^{2} + \frac{1}{2}} \right)}}{{\varGamma \left( {m_{SR} {\rm M}^{2} + \frac{3}{2}} \right)}}, \\ & \quad \times {\text{F}}_{\text{A}}^{(1)} \left( {m_{SR} {\rm M}^{2} + \frac{1}{2};\frac{1}{2},m_{SR} {\rm M}^{2} ;m_{SR} {\rm M}^{2} + \frac{3}{2};\frac{1}{2};\frac{{ - m_{SR} {\rm M}^{2} }}{{\frac{{b\tilde{\delta }_{SR}^{2} P_{S} (\rho_{SR} )^{2(\tau - 1)} \lambda^{2} }}{{2R_{C} \eta_{SR} }}}}} \right). \\ \end{aligned} $$
(77)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, R., Mishra, R.K. Investigation of multiple hop cooperative communication system over time-selective Nakagami-m fading channel . Iran J Comput Sci 3, 145–168 (2020). https://doi.org/10.1007/s42044-020-00054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-020-00054-2

Keywords

Navigation