Skip to main content
Log in

Comparative performance analysis of short-range wireless protocols for wireless personal area network

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

A wide area of a personal network is discuses thoroughly. Wireless personal area networks (WPANs) can be categorized into four parts: Bluetooth, ZigBee, Wi-Fi, and Ultra Wide Band (UWB). Bluetooth and ZigBee wireless technologies are a specification for short-range, low-cost, and small form factor that enables user-friendly connectivity among portable and handheld personal devices, and provide connectivity of these devices to the Internet. It is found from the literature, that ZigBee and Bluetooth are used for short-range while Wi-Fi and UWB have some large-range as compared to Bluetooth and ZigBee. A comparison of short-range wireless technologies is presented. Different parameters, i.e., data coding efficiency, transmission time, transmission range and frequency, power consumption, and the bit error rate of WPAN are plotted and discussed. Some short-range characteristics are also discussed with future aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks: a survey. IEEE Commun. Surv. Tutorials 16(3), 1658–1686 (2014)

    Article  Google Scholar 

  2. Chong, C.-C., Yong, S.K.: UWB direct chaotic communication technology for low-rate WPAN applications. IEEE Trans. Veh. Technol. 57(3), 1527–1536 (2008)

    Article  Google Scholar 

  3. V. K. Chillara, Y.-H. Liu, B. Wang, A. Ba, M. Vidojkovic, K. Philips, H. De Groot, and R. B. Staszewski, “9.8 An 860µW 2.1-to-2.7 GHz all-digital PLL-based frequency modulator with a DTC-assisted snapshot TDC for WPAN (Bluetooth Smart and ZigBee) applications," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE, 2014, 172–173, San Francisco, CA.

  4. Karnfelt, C., Hallbjorner, P., Zirath, H., Alping, A.: High gain active microstrip antenna for 60-GHz WLANWPAN applications. IEEE Trans. Microw. Theor. Tech. 54(6), 2593–2603 (2006)

    Article  Google Scholar 

  5. A. U. Rehman, R. M. Asif, R. Tariq and A. Javed, "Gsm based solar automatic irrigation system using moisture, temperature and humidity sensors," 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T), Kuala Lumpur, 2017, 1–4, https://doi.org/10.1109/ICE2T.2017.8215945.

  6. Klemm, M., Kovcs, I.Z., Pedersen, G.F., Troster, G.: Novel small-size directional antenna for UWB WBANWPAN applications. IEEE Trans. Antennas Propag. 53(12), 3884–3896 (2005)

    Article  Google Scholar 

  7. Tang, S.-N., Tsai, J.-W., Chang, T.-Y.: A 2.4-GSs FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II 57(6), 451–455 (2010)

    Article  Google Scholar 

  8. Rehman Ur, M., Sadiq, T., Shabbir, N., Jafri, G.: Opportunistic cognitive MAC (OC-MAC) protocol for dynamic spectrum access in WLAN environment. Int. J. Comput. Sci. Issues (IJCSI) 10(6), 45–51 (2013)

    Google Scholar 

  9. Weily, R., Guo, Y.J.: Circularly polarized ellipse-loaded circular slot array for millimeter-wave WPAN applications. IEEE Trans. Antennas Propag. 57(10), 2862–2870 (2009)

    Article  Google Scholar 

  10. Chen, Y., Tsao, Y.-C., Lin, Y.-W., Lin, C.-H., Lee, C.-Y.: An indexed scaling pipelined FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II 55(2), 146–150 (2008)

    Article  Google Scholar 

  11. Rehman, A.U., Jiang, A., Rehman, A., et al.: Identification and role of opinion leaders in information diffusion for online discussion network. J. Ambient Intell. Human Comput. (2020). https://doi.org/10.1007/s12652-019-01623-5

    Article  Google Scholar 

  12. Y. Zheng, Y. Tong, C. W. Ang, Y.-P. Xu, W. G. Yeoh, F. Lin, and R. Singh, “A CMOS carrier-less UWB transceiver for WPAN applications," in 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers. IEEE, 2006, 378-387

  13. P. S. Neelakanta and H. Dighe, "Robust factory wireless communications: a performance appraisal of the Bluetooth/spl trade/ and the ZigBee/spl trade/ colocated on an industrial floor," IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), Roanoke, VA, USA, 2003, 3, 2381–2386 https://doi.org/10.1109/IECON.2003.1280617.

  14. A. U. Rehman, A. Jiang, A. Rehman and A. Paul, "Weighted Based Trustworthiness Ranking in Social Internet of Things by using Soft Set Theory," 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 2019, 1644–1648, https://doi.org/10.1109/ICCC47050.2019.9064242.

  15. Bisdikian, C., et al.: An overview of the Bluetooth wireless technology. IEEE Commun. Mag. 39(12), 86–94 (2001)

    Article  Google Scholar 

  16. Lee, J.-S., Su, Y.-W., Shen, C.-C., et al.: A comparative study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-Fi. Ind. Electron. Soc. 5, 46–51 (2007)

    Google Scholar 

  17. Rehman, A.U., Naqvi, R.A., Rehman, A., Paul, A., Sadiq, M.T., Hussain, D.: A trustworthy SIoT aware mechanism as an enabler for citizen services in smart cities. Electronics 9, 918 (2020)

    Article  Google Scholar 

  18. Jakobsson, M., Wetzel, S.: Security weaknesses in bluetooth. In: Cryptographers Track at the RSA Conference, pp. 176–191. Springer, USA (2001)

    Google Scholar 

  19. Lee, J.S., Huang, Y.: ITRI ZBnode: A ZigBee/IEEE 802.15.4 Platform for Wireless Sensor Networks. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, pp. 1462–1467 (2006). https://doi.org/10.1109/ICSMC.2006.384923

  20. Asif, R.M., Ur Rehman, A., Rehman, S.U., et al.: Design and analysis of robust fuzzy logic maximum power point tracking based isolated photovoltaic energy system. Eng. Rep. 2, e12234 (2020). https://doi.org/10.1002/eng2.12234

    Article  Google Scholar 

  21. Lee, J.-S.: “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. IEEE Trans. Consumer Electron. 52(3), 742–749 (2006)

    Article  Google Scholar 

  22. Ramya, C.M., Shanmugaraj, M., Prabakaran, R.: Study on ZigBee technology. 2011 3 rd Int. Conf. Electron. Comput. Technol. 6, 297–301 (2011). https://doi.org/10.1109/ICECTECH.2011.5942102

    Article  Google Scholar 

  23. W. Wang, G. He and J. Wan, "Research on Zigbee wireless communication technology," 2011 International Conference on Electrical and Control Engineering, Yichang, (2011), 1245-1249, https://doi.org/10.1109/ICECENG.2011.6057961

  24. Arshad, J., Rehman, A., Rehman, A.U., Ullah, R., Hwang, S.O.: Spectral efficiency augmentation in uplink massive MIMO systems by increasing transmit power and uniform linear array gain. Sensors 20, 4982 (2020)

    Article  Google Scholar 

  25. Zhang, J., Li, W., Han, N., Kan, J.: Forest fire detection system based on a ZigBee wireless sensor network. Front. For. China 3(3), 369–374 (2008)

    Article  Google Scholar 

  26. A. Sikora and V. F. Groza, "Coexistence of IEEE802.15.4 with other Systems in the 2.4 GHz-ISM-Band," 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, Ont., (2005), 1786-1791, https://doi.org/10.1109/IMTC.2005.1604479

  27. Bennis, M., Simsek, M., Czylwik, A., Saad, W., Valentin, S., Debbah, M.: When cellular meets WiFi in wireless small cell networks. IEEE Commun. Mag. 51(6), 44–50 (2013)

    Article  Google Scholar 

  28. L. Li, X. Hu, and W. Zhang.: Design of an ARM-based power meter having WIFI wireless communication module. In: 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, pp. 403–407 (2009). https://doi.org/10.1109/ICIEA.2009.5138237

  29. K. Shuaib, M. Boulmalf, F. Sallabi and A. Lakas, "Co-existence of Zigbee and WLAN, A Performance Study," 2006 Wireless Telecommunications Symposium, Pomana, CA, (2006), 1-6, https://doi.org/10.1109/WTS.2006.334532

  30. J. Lee, Y. Su and C. Shen, "A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi," IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, (2007), 46-51, https://doi.org/10.1109/IECON.2007.4460126

  31. Sadiq, M.T., et al.: Motor imagery EEG signals classification based on mode amplitude and frequency components using empirical wavelet transform. IEEE Access 7, 127678–127692 (2019). https://doi.org/10.1109/ACCESS.2019.2939623

    Article  Google Scholar 

  32. K. Shahzad and B. Oelmann, "A comparative study of in-sensor processing vs. raw data transmission using ZigBee, BLE and Wi-Fi for data intensive monitoring applications," 2014 11th International Symposium on Wireless Communications Systems (ISWCS), Barcelona, 2014, 519-524, https://doi.org/10.1109/ISWCS.2014.6933409

  33. Xin Wang, Yong Ren, Jun Zhao, Zihua Guo and R. Yao, "Comparison of IEEE 802.11e and IEEE 802.15.3 MAC," Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No.04EX710), Shanghai, China, (2004), 2, 675–680 https://doi.org/10.1109/CASSET.2004.1321978.

  34. Abinayaa, V., Jayan, A.: Case study on comparison of wireless technologies in industrial applications. Int. J. Sci. Res. Publ. 4(2), 1–4 (2014)

    Google Scholar 

  35. A. M. Furqan Durrani, A. U. Rehman, A. Farooq, J. A. Meo and M. T. Sadiq, "An Automated Waste Control Management System (AWCMS) by Using Arduino," 2019 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, (2019), 1–6, https://doi.org/10.1109/CEET1.2019.8711844.

  36. S. Ahamed.: The role of zigbee technology in future data communication system. J. Theor. Appl. Inf. Technol. 5(2) (2009)

  37. Sadiq MT., Yu X., Yuan Z., Aziz MZ.: Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform. Electronics Letters (2020), vol 56, 25, pp 1367–1369. https://doi.org/10.1049/el.2020.2509 IET Digital Library. Accessed 28 Jan 2021

  38. X. Chen and L. Li, “Research on Ultra-Wideband Antenna," in 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, 2008, 1–5.

  39. Sadiq, M.T., Yu, X., Yuan, Z., Aziz, M.Z.: Identification of motor and mental imagery EEG in two and multiclass subject-dependent tasks using successive decomposition index. Sensors 20(18), 5283 (2020). https://doi.org/10.3390/s20185283

    Article  Google Scholar 

  40. W. Mazhar, M. Tarar, F. Tahir, S. Ullah, and F. Bhatti, “Compact microstrip patch antenna for ultra-wideband applications," PIERS Proceedings, Stockholm, Sweden, 2013.

  41. Sadiq, M.T., et al.: Motor imagery eeg signals decoding by multivariate empirical wavelet transform-based framework for robust brain-computer interfaces. IEEE Access 7, 171431–171451 (2019). https://doi.org/10.1109/ACCESS.2019.2956018

    Article  Google Scholar 

  42. M. R. Mahfouz, A. E. Fathy, M. J. Kuhn and Y. Wang, "Recent trends and advances in UWB positioning," 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, Cavtat, 2009, 1-4, https://doi.org/10.1109/IMWS2.2009.5307895

  43. Sadiq, M.T., Yu, X., Yuan, Z.: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces. Expert Syst. Appl. 164, 114031 (2021). https://doi.org/10.1016/j.eswa.2020.114031

    Article  Google Scholar 

  44. Akbari, H., Sadiq, M.T.: Detection of focal and non-focal EEG signals using non-linear features derived from empirical wavelet transform rhythms. Phys. Eng. Sci. Med. (2021). https://doi.org/10.1007/s13246-020-00963-3

    Article  Google Scholar 

  45. Hussain, W., Sadiq, M.T., Siuly, S., Rehman, A.U.: Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks. Appl. Acoust. 177, 107941 (2021)

    Article  Google Scholar 

  46. Akbari, H., Sadiq, M.T., Rehman, A.U.: Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain. Health Inf. Sci. Syst. 9, 9 (2021). https://doi.org/10.1007/s13755-021-00139-7

    Article  Google Scholar 

  47. Sadiq, M.T., Yu, X., Yuan, Z., Aziz, M.Z., Siuly, S., Ding, W.: A matrix determinant feature extraction approach for decoding motor and mental imagery EEG in subject specific tasks. IEEE Trans. Cognit. Dev. Syst. (2020). https://doi.org/10.1109/TCDS.2020.3040438

    Article  Google Scholar 

  48. Sadiq, M.T., Shabbir, N., Kulesza, W.J.: Spectral subtraction for speech enhancement in modulation domain. IJCSI Int. J. Comput. Sci. Issues 10(4), 1694–1784 (2013)

    Google Scholar 

  49. Fan, Z., Jamil, M., Sadiq, M.T., Huang, X., Xiaojun, Y.: Exploiting multiple optimizers with transfer learning techniques for the identification of COVID-19 patients. J. Healthcare Eng. 2020, 1–13 (2020). https://doi.org/10.1155/2020/8889412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abu Bakar Siddique.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubashar, R., Siddique, M.A.B., Rehman, A.U. et al. Comparative performance analysis of short-range wireless protocols for wireless personal area network. Iran J Comput Sci 4, 201–210 (2021). https://doi.org/10.1007/s42044-021-00087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-021-00087-1

Keywords

Navigation