Skip to main content

Advertisement

Log in

Improving the quality of underwater imaging using deep convolution neural networks

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Enhancing the quality of images captured underwater plays a key role in underwater computer vision applications. The underwater environment has attracted attention from scientists working on ocean mammals, shipwrecks, immersed cave structures, subaqueous studies, invertebrates, and geological features. Because of the underwater environment, undersea images suffer from issues such as light attenuation, color absorption, and variations with the type of water. A deep learning-based network known as the smart deep convolution neural network (SDCNN) is proposed herein. The model is divided into three subnetworks that address the white balance (WB-Net), histogram equalization (HE-Net), and edge sharpening (ES-Net). These three networks were trained using real-world underwater images, considering color cast correction, dehazing, and edge sharpening. The experimental results demonstrated that, using the proposed method, the visual quality of underwater images can be enhanced. The method uses traditional image enhancement methods with a deep convolution neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bianco, S., Cusano, C., & Schettini, R.: Color constancy using CNNs. In: ieee conference on computer vision and pattern recognition workshops (CVPRW). Boston, MA, USA (2015)

  2. Guo, Q., Xue, L., Tang, R., Guo, L.: Underwater image enhancement based on the dark channel prior and attenuation compensation. J. Ocean Univ. China 16(5), 757–765 (2017)

    Article  Google Scholar 

  3. Schettini, R., Corchs, S.: Underwater image processing: state of art of restoration and image enhancement Methods. EURASIP J. Adv. Signal Process. (2010). https://doi.org/10.1155/2010/746052

    Article  Google Scholar 

  4. Li, C.-Y., Guo, J.-C., Cong, R.-M., Pang, Y.-W., Wang, B.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016). https://doi.org/10.1109/TIP.2016.2612882

    Article  MathSciNet  MATH  Google Scholar 

  5. Chongyi, L., Chunle, G., Wenqi, R., Runmin, C., Junhui, H., Sam, K., Dacheng, T.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)

    Google Scholar 

  6. Peng, Y.-T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017). https://doi.org/10.1109/TIP.2017.2663846

    Article  MathSciNet  MATH  Google Scholar 

  7. Singh, R., Biswas, M.: Adaptive histogram equalization-based fusion technique for hazy underwater image enhancement. In: IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India. (2016). https://doi.org/10.1109/ICCIC.2016.7919711

  8. Garg, D., Garg, N.K., Kumar, M.: Underwater image enhancement using a blending of CLAHE and percentile methodologies. Multimedia Tools Appl. 77(20), 26545–26561 (2018)

    Article  Google Scholar 

  9. Khan, A., Ali, S. S. A., Malik, A. S., Anwer, A., Meriaudeau, F.: Underwater image enhancement by wavelet-based fusion. In: IEEE international conference on underwater system technology: theory and applications (USYS). Penang, Malaysia. (2016). https://doi.org/10.1109/usys.2016.7893927

  10. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2018). https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, Y., Yang, F., He, W.: An approach for underwater image enhancement based on color correction and dehazing. Int. J. Adv. Rob. Syst. 17(5), 1729881420961643 (2020)

    Google Scholar 

  12. Abaspur Kazerouni, I., Dooly, G., Toal, D.: Underwater image enhancement and mosaicking system based on A-KAZE feature matching. J. Mar. Sci. Eng. 8(6), 449 (2020)

    Article  Google Scholar 

  13. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Rob. Autom. Lett. 3(1), 387–394 (2017). https://doi.org/10.1109/LRA.2017.2730363

    Article  Google Scholar 

  14. Yeh, C.-H., Huang, C.-H., Lin, C.-H.: Deep learning underwater image color correction and contrast enhancement based on hue preservation. In: IEEE underwater technology (UT). Kaohsiung, Taiwan. (2019)

  15. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016). https://doi.org/10.1109/TIP.2016.2598681

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, X., Wang, Y., Zhang, J., Fu, X.: Underwater image dehaze using scene depth estimation with adaptive color correction. In: OCEANS 2017—Aberdeen. Aberdeen, UK. (2017)

  17. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.-P., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  Google Scholar 

  18. Tao, L., Zhu, C., Song, J., Lu, T., Jia, H., Xie, X.: Low-light image enhancement using CNN and bright channel prior. In: IEEE international conference on image processing (ICIP). Beijing, China. (2017)

  19. Wang, Y., Guo, J., Gao, H., Yue, H.: UIEĈ2-Net: CNN-based underwater image enhancement using two-color space. Signal Process. Image Commun. 2021, 116250 (2021)

    Article  Google Scholar 

  20. Li, Y., Lu, H., Li, J., Li, X., Li, Y., Serikawa, S.: Underwater image de-scattering and classification by the deep neural network. Comput. Electr. Eng. 54, 68–77 (2016)

    Article  Google Scholar 

  21. Lu, H., Uemura, T., Wang, D., Zhu, J., Huang, Z., Kim, H.: Deep-sea organisms tracking using dehazing and deep learning. Mobile Netw. Appl. 191, 1–8 (2018). https://doi.org/10.1007/s11036-018-1117-9

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.C.: Modern image quality assessment. synthesis lectures on image, video and multimedia processing. Morgan & Claypool Publishers. (2006)

  23. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015). https://doi.org/10.1109/TIP.2015.2491020

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, G., Yang, C., Xie, S.: Gradient-based structural similarity for image quality assessment. In: 2006 international conference on image processing. (2006). https://doi.org/10.1109/icip.2006.313132

  25. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015). https://doi.org/10.1109/LSP.2015.2487369

    Article  Google Scholar 

  27. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2016). https://doi.org/10.1109/JOE.2015.2469915

    Article  Google Scholar 

  28. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. https://arxiv.org/abs/1412.6980. (2017)

  29. Sun, X., Liu, L., & Dong, J.: Underwater image enhancement with encoding-decoding deep CNN networks. In: 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1–6). IEEE. (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraj V. Dharwadkar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharwadkar, N.V., M.Yadav, A. & Kadampur, M.A. Improving the quality of underwater imaging using deep convolution neural networks. Iran J Comput Sci 5, 127–141 (2022). https://doi.org/10.1007/s42044-021-00093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-021-00093-3

Keywords

Navigation