Skip to main content
Log in

Performance analysis of neural network-based polar decoding algorithms with different code rates

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Neural network approach with deep learning is of interest of late in channel decoding. Polar code is a desirable candidate in 5G and replaces Turbo code with better error correction capacities. In view of this, there is a need to explore polar decoding with neural network techniques. In this paper, the performance of polar decoding using conventional successive cancellation (SC) algorithm and belief propagation (BP) algorithm are evaluated in additive white Gaussian noise (AWGN) in python platform. Also, an effort is made to test the performance of decoding by implementing belief propagation algorithm using neural network, called as belief propagation neural network (BPNN). BPNN is chosen, as it requires a minimum number of iterations to complete the decoding operation. Performance is compared with that of conventional decoding. Performance analysis is carried out in terms of bit error rate (BER) for different input code lengths and code rates. Block length error rate (BLER) analysis of algorithms is also investigated. It is observed that BPNN performs better with improvement in the performance with modified neural network architecture and training sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

NN:

Neural network

SC:

Successive cancellation

BP:

Belief propagation

BPNN:

Belief propagation neural network

AWGN:

Additive white Gaussian noise

BPSK:

Binary phase shift keying

GA:

Greedy algorithm

LR:

Likelihood ratio

LLR:

Log likelihood ratio

BER:

Bit error rate

BLER:

Block length error rate

FPGA:

Field programmable gate array

SNR:

Signal-to-noise ratio

k:

Bits of information

I:

Mutual information

N:

Code word length

\(z\left(w\right)\) :

Bhattacharyya parameter

\({x}^{N}\) :

Input data

\({y}^{N}\) :

Output data

\({w}^{N}\) :

Channel

K i :

Estimated value of reliability

u :

Input to the encoder

n :

Nodes in the encoder structure

f :

F-function

g :

G-function

hi :

Hard decision function

frz :

Frozen bits

\({\widehat{b}}_{i}\) :

Output of the decoder

\({b}_{i}\) :

Input of the decoder

\(\alpha ,\beta ,\delta ,\chi \) :

Coefficients of BP algorithm

q:

Value of the bit inside decoder

References

  1. Arikan, E.: Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memory less channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Article  Google Scholar 

  2. Vikalo, H., Hassibi, B.: On the sphere-decoding algorithm II Generalizations, second-order statistics, and applications to Communications. IEEE Trans. Signal Process. 53(8), 2819–2834 (2005)

    Article  MathSciNet  Google Scholar 

  3. Papaharalabos, S., Mathiopoulos, P.T.: Simplified sum-product algorithm for decoding LDPC codes with optimal performance. Electronics 45(2), 116–117 (2009)

    Google Scholar 

  4. Mori, R., Tanaka, T.: Performance of polar codes with the construction using density evaluation. IEEE Commun. Lett. 13(7), 519–521 (2009)

    Article  Google Scholar 

  5. Hussami, N., Korada, S., Urbanke, R.: Performance of polar codes for channel and source coding. Proc. IEEE ISIT 2, 1488–1492 (2009)

    Google Scholar 

  6. Amin Alamdar, Y., Kschischang, F.R.: A Simplified successive-cancellation decoder for Polar Codes. IEEE Commun. Lett. 2, 1378–1380 (2011)

    Article  Google Scholar 

  7. Alptekin, P.: An FPGA implementation architecture for decoding of polar codes. 8th International Symposium on Wireless Communication Systems (ISWCS) (2011), pp. 437–441.

  8. Trifonov, P.: Efficient design and decoding of polar codes. IEEE Trans. Commun. 60(11), 3221–3227 (2012)

    Article  Google Scholar 

  9. Tal, I., Vardy, A.: How to construct polar codes. IEEE Trans. Inf. Theory 59(10), 6562–6582 (2013)

    Article  MathSciNet  Google Scholar 

  10. Yuan, B., Parhi, K.K.: Architecture optimizations for BP polar decoders. Proc. 38th IEEE ICASSP: (2013), pp. 2654–2658.

  11. Chen, K., Niu, K., Lin, J.: Improved successive cancellation decoding of polar codes. IEEE Trans. Commun. 61(8), 3100–3107 (2013)

    Article  Google Scholar 

  12. Chen, K., Niu, K., Lin, J.: A reduced-complexity successive cancellation list decoding of polar codes. Proceedings of the IEEE Vehicular Technology Conference. VTC Spring, Dresden (2013), pp. 1–5.

  13. Alptekin, P., Erdal, A.: A two phase Successive cancellation decoder architecture for polar codes. IEEE International Symposium on Information Theory Proceedings (ISIT) (2013), pp.957–961.

  14. Kai, N.: Polar codes: Primary concepts and practical decoding algorithms. IEEE Commun. Mag. 2, 192–203 (2014)

    Google Scholar 

  15. Jing Guo, Enhanced belief propagation decoding of Polar Codes through concatenation. IEEE International Symposium on Information Theory (ISIT), (2014), pp. 2987–2991.

  16. Mohsin Abbas, S., Fan, Y., Chen, J., Tsui, C.: Low complexity belief propagation polar code decoders. (2015). http://arxiv.org/abs/1505.04979.

  17. Balatsoukas Stimming, M., Bastani Parizi, A., Burg, A.: On metric sorting for successive cancellation list decoding of polar codes. IEEE International Symposium. Circuits and Systems (2015), pp. 1993–1996.

  18. Fan, Y., Chen, J., Xia, C., Tsui, C.Y., Jin, J., Shen, H., Li, B.: Low latency list decoding of polar codes with double thresholding. IEEE Int. Conf. Acoust. Speech Signal Process 2, 1042–1046 (2015)

    Google Scholar 

  19. Alexios, B.S., Mani, B.P., Andreas, B.: LLR based successive cancellation list decoding of Polar codes. IEEE Trans. Signal Process. 2, 5165–5179 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Sebastian, C., Tobias, G., Jakob, H., Stephan, T.B.: Scaling deep learning-based decoding of polar codes via partitioning. IEEE Global communication conference. (2017).

  21. Weihong, X., Xiaohu, Y., Chuan, Z., Yair, B.: Polar decoding on sparse graphs with deep learning. 52nd Asilomar Conference on Signals and Systems, and Computers. (2018).

  22. Elkelesh, A., Ebada, M., Cammerer, S., ten Brink, S.: Belief propagation list decoding of polar codes. IEEE Commun. Lett. 22(8), 1536–1539 (2018)

    Article  Google Scholar 

  23. Chandesris, L., Savin, V., Declercq, D.: Dynamic SC flip decoding of polar codes. IEEE Trans. Commun. 66(6), 2333–2345 (2018)

    Article  Google Scholar 

  24. Cammerer, S., Ebada, M., Elkelesh, A., TenBrink, S.: Sparse graphs for belief propagation decoding of polar codes. Proc. IEEE International Symposium on Information Theory (ISIT), USA (2018).

  25. Syed Aizaz Ali, S.: Coarsely quantized decoding and construction of polar codes using the information bottleneck method. Algorith. MDPI Basel 12, 9 (2019)

    MathSciNet  Google Scholar 

  26. Zhou, D., Niu, K., Dong, C.: Construction of polar codes in Rayleigh fading channel. IEEE Commun. Lett. 23(3), 402–405 (2019)

    Article  Google Scholar 

  27. Şaşoğlu, E., Tal, I.: Polar coding for processes with memory. IEEE Trans. Inf. Theory 65(4), 1994–2003 (2019)

    Article  MathSciNet  Google Scholar 

  28. Shuval, B., Tal, I.: Fast polarization for processes with memory. IEEE Trans. Inf. Theory 65(4), 2004–2020 (2019)

    Article  MathSciNet  Google Scholar 

  29. Bioglio, V., Condo, C., Land, I.: Design of polar codes in 5G new radio (2019), arXiv: 1804.04389v2.

  30. Feng, B.W., Jiao, J., Shao Hua, Wu., Zhang, Q.Y.: How to apply polar codes in high throughput space Communications. Sci. China Technol. Sci. 63, 1371–1382 (2020)

    Article  Google Scholar 

  31. Zhou, H., Fu, Y., Zhang, Z.: An efficient software list sphere decoder for polar codes. J. Signal Process. Syst. 92, 517–528 (2020)

    Article  Google Scholar 

  32. Marvin, G., Ahmed, E., Moustafa, E., Sebastian, C., Stephan, T.B.: CRC-aided belief propagation list decoding of polar codes. IEEE Information theory (2020). ArXiv: 2001.05303.

  33. Devamane, S.B., Itagi, R.L.: Recurrent neural network based turbo decoding algorithms for different code rates. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.03.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar B. Devamane.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devamane, S.B., Itagi, R.L. Performance analysis of neural network-based polar decoding algorithms with different code rates. Iran J Comput Sci 5, 83–97 (2022). https://doi.org/10.1007/s42044-021-00094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-021-00094-2

Keywords

Navigation