Skip to main content

Advertisement

Log in

An effective combined method for data aggregation in WSNs

  • Review Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

A wireless sensor network consists of many wireless sensors in a specific area to collect information from the environment and send the collected data to the base station. In this type of network, a sink node is applied to improve data aggregation with a mobile sink. Many methods have proposed for the use of mobile sinks and a detailed evaluation of the performance of these methods has not been provided. In this paper, the current authors present an effective and new method by combining three data collection methods and mobile sinks. Results reveal that the proposed method has a better performance in terms of parameters than other methods. A main difference is that in addition to the mobile sink, it uses other nodes called advanced nodes that direct data from the header nodes to the sink path, which ultimately results in better performance. The results show that the proposed method has more significant superiority over its comparative techniques, particularly on energy consumption, network lifetime, delay, and missing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allam, A.H., Taha, M., Zayed, H.H.: Enhanced zone-based energy aware data collection protocol for WSNs (E-ZEAL). J. King Saud Univ.-Comput. Inf. Sci. (2019). https://doi.org/10.1016/j.jksuci.2019.10.012

    Article  Google Scholar 

  2. Dhand, G., Tyagi, S.: Data aggregation techniques in WSN: survey. Procedia Comput. Sci. 92, 378–384 (2016). https://doi.org/10.1016/j.procs.2016.07.393

    Article  Google Scholar 

  3. Asgarnezhad, R. and N. Nematbakhsh, A.: reliable and energy efficient routing alhorithm in WSN using learning automata. J. Theor. Appl. Inf. Technol. 82(3) (2015)

  4. Asgarnezhad, R. and Torkestani, J.A.: A survey on backbone formation algorithms for Wireless Sensor Networks:(A New Classification). In 2011 Australasian Telecommunication Networks and Applications Conference (ATNAC). 2011. IEEE. https://doi.org/10.1109/ATNAC.2011.6096632

  5. Asgarnezhad, R. and Torkestani, J.A.: Connected dominating set problem and its application to wireless sensor networks. In: The First International Conference on Advanced Communications and Computation, INFOCOMP (2011)

  6. Park, J., et al.: Iterative sensor clustering and mobile sink trajectory optimization for wireless sensor network with nonuniform density. Wirel. Commun. Mob. Comput. (2020). https://doi.org/10.1155/2020/8853662

    Article  Google Scholar 

  7. Mirania, S.K., Sharma, K.: Mobile sink based improved energy efficient routing algorithm using cluster coordinator node in wireless sensor network. Int. J. Elect. Electron. Eng. Telecommun. 10(5), 355–361 (2021). https://doi.org/10.18178/ijeetc.10.5.355-361

    Article  Google Scholar 

  8. Kiruthiga, T. and Shanmugasundaram, N.: In-network data aggregation techniques for wireless sensor networks: a survey. In: Computer Networks, Big Data and IoT. Springer. pp. 887–905 (2021). https://doi.org/10.1007/978-981-16-0965-7_68

  9. Hasheminejad, E., Barati, H.: A reliable tree-based data aggregation method in wireless sensor networks. Peer-to-Peer Netw. Appl. 14(2), 873–887 (2021). https://doi.org/10.1007/s12083-020-01025-x

    Article  Google Scholar 

  10. Saeedi, I.D.I. and Al-Qurabat, A.K.M.: A systematic review of data aggregation techniques in wireless sensor networks. In: Journal of Physics: Conference Series. IOP Publishing (2021). https://doi.org/10.1088/1742-6596/1818/1/012194

  11. Gavel, S., et al.: A data fusion based data aggregation and sensing technique for fault detection in wireless sensor networks. Computing 103(11), 2597–2618 (2021). https://doi.org/10.1007/s00607-021-01011-y

    Article  MathSciNet  Google Scholar 

  12. Ramezanifar, H., Ghazvini, M., Shojaei, M.: A new data aggregation approach for WSNs based on open pits mining. Wirel. Netw. 27(1), 41–53 (2021). https://doi.org/10.1007/s11276-020-02442-9

    Article  Google Scholar 

  13. Ye, F., et al.: A scalable solution to minimum cost forwarding in large sensor networks. In: Proceedings Tenth International Conference on Computer Communications and Networks (Cat. No. 01EX495). IEEE. (2001). https://doi.org/10.1109/ICCCN.2001.956276

  14. Heinzelman, W.R., Chandrakasan, A. and Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd annual Hawaii International Conference on System Sciences. IEEE. (2000). https://doi.org/10.1109/HICSS.2000.926982

  15. Lindsey, S. and Raghavendra, C.S.: PEGASIS: Power-efficient gathering in sensor information systems. In Proceedings, IEEE aerospace conference. IEEE (2002). https://doi.org/10.1109/AERO.2002.1035242

  16. ManjeshwarA.A.: TEEN: A protocol for enhanced efficiency in wireless sensor networks. The 1st International Workshopon IPDPS, (2001). https://doi.org/10.1109/IPDPS.2001.925197

  17. Manjeshwar, A. and Agrawal, D.P.: APTEEN: a hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In: Parallel and distributed processing symposium, international. Citeseer (2002). https://doi.org/10.1109/IPDPS.2002.1016600

  18. Xu, Y., Heidemann, J. and Estrin, D.: Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking. (2001). https://doi.org/10.1145/381677.381685

  19. Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel. Netw. 8(2), 169–185 (2002). https://doi.org/10.1023/A:1013715909417

    Article  MATH  Google Scholar 

  20. Shah, R.C. and Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor networks. In 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No. 02TH8609). IEEE (2002). https://doi.org/10.1023/A:1013715909417

  21. Braginsky, D. and Estrin, D.: Rumor routing algorthim for sensor networks. In Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. (2002). https://doi.org/10.1145/570738.570742

  22. Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks. Int. J. High Perform. Comput. Appl. 16(3), 293–313 (2002). https://doi.org/10.1177/10943420020160030901

    Article  Google Scholar 

  23. Sadagopan, N., Krishnamachari, B. and Helmy, A.: The ACQUIRE mechanism for efficient querying in sensor networks. In Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003. IEEE (2003). https://doi.org/10.1109/SNPA.2003.1203365

  24. Sirsikar, S., Anavatti, S.: Issues of data aggregation methods in wireless sensor network: a survey. Procedia Comput. Sci. 49, 194–201 (2015). https://doi.org/10.1016/j.procs.2015.04.244

    Article  Google Scholar 

  25. Liu, B.-H., et al.: A heuristic for maximizing the lifetime of data aggregation in wireless sensor networks. arXiv preprint arXiv:1910.05310, 2019.

  26. Srikanth, N., Ganga Prasad, M.S.: Efficient energy clustering protocol using genetic algorithm in wireless sensor networks. J. Eng. Sci. Technol. Rev. (2018). https://doi.org/10.25103/jestr.116.12

    Article  Google Scholar 

  27. Idrees, A.K., Al-Qurabat, A.K.M.: Energy-efficient data transmission and aggregation protocol in periodic sensor networks based fog computing. J. Netw. Syst. Manage. 29(1), 1–24 (2021). https://doi.org/10.1007/s10922-020-09567-4

    Article  Google Scholar 

  28. Shobana, M., Sabitha, R., Karthik, S.: Cluster-based systematic data aggregation model (CSDAM) for real-time data processing in large-scale WSN. Wirel. Person. Commun. (2020). https://doi.org/10.1007/s11277-020-07054-2

    Article  Google Scholar 

  29. Alam, M., et al.: Error-aware data clustering for in-network data reduction in wireless sensor networks. Sensors 20(4), 1011 (2020). https://doi.org/10.3390/s20041011

    Article  Google Scholar 

  30. Verma, N., Singh, D.: Local aggregation scheme for data collection in periodic sensor network. Int. J. Eng. Adv. Technol. (2019). https://doi.org/10.35940/ijeat.B2602.129219

    Article  Google Scholar 

  31. Idrees, A.K., et al.: Integrated divide and conquer with enhanced k-means technique for energy-saving data aggregation in wireless sensor networks. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE (2019). https://doi.org/10.1109/IWCMC.2019.8766784

  32. Kumar, S., Kim, H.: Energy efficient scheduling in wireless sensor networks for periodic data gathering. IEEE Access 7, 11410–11426 (2019). https://doi.org/10.1109/ACCESS.2019.2891944

    Article  Google Scholar 

  33. Yadav, S. and Yadav, R.S.: Redundancy elimination during data aggregation in wireless sensor networks for IoT systems, In Recent Trends in Communication, Computing, and Electronics. Springer. pp. 195–205 (2019). https://doi.org/10.1007/978-981-13-2685-1_20

  34. SreeRanjani, N., Ananth, A., Reddy, L.S.: An energy efficient data gathering scheme in wireless sensor networks using adaptive optimization algorithm J. . Comput. Theor. Nanosci. 15(11–12), 3456–3461 (2018). https://doi.org/10.1166/jctn.2018.7644

    Article  Google Scholar 

  35. Yuan, F., Zhan, Y., Wang, Y.: Data density correlation degree clustering method for data aggregation in WSN. IEEE Sens. J. 14(4), 1089–1098 (2013). https://doi.org/10.1109/JSEN.2013.2293093

    Article  Google Scholar 

  36. Zhu, C., et al.: A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access 3, 381–396 (2015). https://doi.org/10.1109/ACCESS.2015.2424452

    Article  Google Scholar 

  37. Nguyen, N.-T., et al.: On maximizing the lifetime for data aggregation in wireless sensor networks using virtual data aggregation trees. Comput. Netw. 105, 99–110 (2016). https://doi.org/10.1016/j.comnet.2016.05.022

    Article  Google Scholar 

  38. Al-Tabbakh, S.M.: Novel technique for data aggregation in wireless sensor networks. In 2017 International conference on internet of things, embedded systems and communications (IINTEC). IEEE. (2017). https://doi.org/10.1109/IINTEC.2017.8325904

  39. Ghate, V.V., Vijayakumar, V.: Machine learning for data aggregation in WSN: a survey. Int. J. Pure Appl. Math. 118(24), 1–12 (2018)

    Google Scholar 

  40. Maraiya, K., Kant, K., Gupta, N.: Efficient cluster head selection scheme for data aggregation in wireless sensor network. Int. J. Comput. Appl. 23(9), 10–18 (2011)

    Google Scholar 

  41. Liu, X., et al.: Query privacy preserving for data aggregation in wireless sensor networks. Wirel. Commun. Mob. Comput. (2020). https://doi.org/10.1155/2020/9754973

    Article  Google Scholar 

  42. Jain, S., Pattanaik, K., Shukla, A.: QWRP: query-driven virtual wheel based routing protocol for wireless sensor networks with mobile sink. J. Netw. Comput. Appl. 147, 102430 (2019). https://doi.org/10.1016/j.jnca.2019.102430

    Article  Google Scholar 

  43. Dorling, K.: A net present cost minimization framework for Wireless Sensor Networks. (2016). https://doi.org/10.11575/PRISM/24855

  44. Wang, J., et al.: Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. J. Supercomput. 73(7), 3277–3290 (2017). https://doi.org/10.1007/s11227-016-1947-9

    Article  Google Scholar 

  45. Wei, Q., et al.: A cluster-based energy optimization algorithm in wireless sensor networks with mobile sink. Sensors 21(7), 2523 (2021). https://doi.org/10.3390/s21072523

    Article  Google Scholar 

  46. Chauhan, S., Kaur, G.: A virtual grid-based dynamic routes adjustment (VGDRA) scheme for wireless sensor networks based on sink mobility. Int. Res. J. Eng. Technol. (IRJET) 4, 212–216 (2017). https://doi.org/10.1109/JSEN.2014.2347137

    Article  Google Scholar 

  47. Umadevi, M. and Devapriya, M.: Simulation for spatial convergence on structure free data aggregation in wireless sensor network. In 2016 International Conference on Computer Communication and Informatics (ICCCI). IEEE. (2016). https://doi.org/10.1109/ICCCI.2016.7479986

  48. Chen, T.-S., et al.: Geographic convergecast using mobile sink in wireless sensor networks. Comput. Commun. 36(4), 445–458 (2013). https://doi.org/10.1016/j.comcom.2012.11.008

    Article  Google Scholar 

  49. Wang, J., et al.: An energy efficient stable election-based routing algorithm for wireless sensor networks. Sensors 13(11), 14301–14320 (2013). https://doi.org/10.1016/j.comcom.2012.11.008

    Article  Google Scholar 

  50. Sapre, S., Mini, S.: A differential moth flame optimization algorithm for mobile sink trajectory. Peer-to-Peer Netw. Appl. 14(1), 44–57 (2021). https://doi.org/10.1007/s12083-020-00947-w

    Article  Google Scholar 

  51. Wang, T., et al.: The cluster head preferred hierarchical clustering routing protocol based on G-means in Wireless Sensor Networks. Int. J. Future Gener. Commun. Netw. 8(3), 179–190 (2015). https://doi.org/10.14257/ijfgcn.2015.8.3.17

    Article  Google Scholar 

  52. Asgarnezhad, R., Monadjemi, S.A., Soltanaghaei, M.: An application of MOGW optimization for feature selection in text classification. J. Supercomput. 77(6), 5806–5839 (2021). https://doi.org/10.1007/s11227-020-03490-w

    Article  Google Scholar 

  53. Asgarnezhad, R., Monadjemi, S.A., Aghaei, M.S.: A new hierarchy framework for feature engineering through multi-objective evolutionary algorithm in text classification. Concurr. Comput. Pract. Exp. (2021). https://doi.org/10.1002/cpe.6594

    Article  Google Scholar 

  54. Etemadi, M., Ghobaei-Arani, M., Shahidinejad, A.: Resource provisioning for IoT services in the fog computing environment: an autonomic approach. Comput. Commun. 161, 109–131 (2020). https://doi.org/10.1016/j.comcom.2020.07.028

    Article  Google Scholar 

  55. Aslanpour, M., et al.: Resource provisioning for cloud applications: a 3-D, provident and flexible approach. J. Supercomput. 74(12), 6470–6501 (2018). https://doi.org/10.1007/s11227-017-2156-x

    Article  Google Scholar 

  56. Ghobaei-Arani, M., Shahidinejad, A.: An efficient resource provisioning approach for analyzing cloud workloads: a metaheuristic-based clustering approach. J. Supercomput. 77(1), 711–750 (2021). https://doi.org/10.1007/s11227-020-03296-w

    Article  Google Scholar 

  57. Ghobaei-Arani, M.: A workload clustering based resource provisioning mechanism using Biogeography based optimization technique in the cloud based systems. Soft. Comput. 25(5), 3813–3830 (2021). https://doi.org/10.1007/s00500-020-05409-2

    Article  Google Scholar 

  58. Fini, M. R., and ZargariAsl, F.: A fast intra mode decision method based on reduction of the number of modes in HEVC standard. In 7'th International Symposium on Telecommunications (IST'2014). IEEE (2014). https://doi.org/10.1109/ISTEL.2014.7000820

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Asgarnezhad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarnezhad, R., Monadjemi, S.A. An effective combined method for data aggregation in WSNs. Iran J Comput Sci 5, 167–185 (2022). https://doi.org/10.1007/s42044-022-00105-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-022-00105-w

Keywords

Navigation