Skip to main content
Log in

Features extraction and reduction techniques with optimized SVM for Persian/Arabic handwritten digits recognition

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Recognizing handwritten digits is one of the most active research areas in computer vision, as there are a variety of applications, such as automatic identification of digits in bank checks and vehicle numbers. In the last 3 decades, much effort has been devoted to recognizing handwritten Latin digits, while much less attention has been paid to the recognition of Persian and Arabic handwritten digits. For this reason, we will focus on the problem of recognizing Persian and Arabic handwritten numerals. We present an efficient and robust low-dimensional representation of the digit image based on an improved version of the histogram of oriented gradient (HOG) as a feature descriptor. A principal component analysis (PCA)-based dimensionality reduction strategy is also proposed to obtain a subset of features that optimizes classification accuracy. The selected sets of features were fed into a radial basis function (RBF)-based support vector machine (SVM) algorithm that performs classification, and the hyperparameters C and \(\gamma \) were optimized using a Bayesian optimization (BO) algorithm. Extensive experimental results with 80,000 handwritten samples of Persian/Arabic numerals show that our method outperforms the current state-of-the-art classification accuracy and computational efficiency. This trade-off between accuracy and time complexity is highly beneficial for the real-time performance of handwritten digit recognition applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Elleuch, M., Kherallah, M.: An improved arabic handwritten recognition system using deep support vector machines. In: Computer vision: concepts, methodologies, tools, and applications. IGI Global (2018)

  2. Freeman, H.: Computer processing of line-drawing images. ACM Comput. Surv. (CSUR) 6(1), 57–97 (1974)

    Article  MATH  Google Scholar 

  3. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the seventh IEEE international conference on computer vision, vol. 2, pp.s 1150–1157. IEEE (1999)

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  5. Ming-Kuei, H.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol. 1, pp. 886–893. IEEE (2005)

  7. Sean, Z., Xiang, H., Thomas, S.: Edge-based structural features for content-based image retrieval. Pattern Recogn. Lett. 22(5), 457–468 (2001)

    Article  MATH  Google Scholar 

  8. Masaeli, M., Fung, G.D., Jennifer,G.: From transformation-based dimensionality reduction to feature selection. In: ICML (2010)

  9. Pearson, K.: Liii On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  MATH  Google Scholar 

  10. Radhakrishna, R.C.: The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. Ser. B (Methodol.) 10(2), 159–203 (1948)

    MathSciNet  MATH  Google Scholar 

  11. Quanquan, G., Zhenhui, L., Jiawei, Han.: Generalized fisher score for feature selection. arXiv:1202.3725 (2012)

  12. Ferri, F.J., Pudil, P., Hatef, M., Kittler, J.: Comparative study of techniques for large-scale feature selection. In: Machine intelligence and pattern recognition, vol. 16, pp. 403–413. Elsevier (1994)

  13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  14. Lee, Y.: Handwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networks. Neural Comput. 3(3), 440–449 (1991)

    Article  Google Scholar 

  15. Bernard, S., Adam, S., Heutte, L.: Using random forests for handwritten digit recognition. In: Ninth international conference on document analysis and recognition (ICDAR 2007), vol. 2, pp. 1043–1047. IEEE (2007)

  16. Albahli, S., Nawaz, M., Javed, A., Irtaza, A.: An improved faster-rcnn model for handwritten character recognition. Arab. J. Sci. Eng. 46(9), 8509–8523 (2021)

    Article  Google Scholar 

  17. Fateh, A., Fateh, M., Abolghasemi, V.: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning. Inf. Sci. 581, 479–494 (2021)

    Article  MathSciNet  Google Scholar 

  18. Mohammadi Safarzadeh, V., Jafarzadeh, P.: Offline Persian handwriting recognition with cnn and rnn-ctc. In: 2020 25th international computer conference, computer society of Iran (CSICC), pp. 1–10. IEEE (2020)

  19. Khosravi, H., Kabir, E.: Introducing a very large dataset of handwritten farsi digits and a study on their varieties. Pattern Recogn. Lett. 28(10), 1133–1141 (2007)

    Article  Google Scholar 

  20. Parvin, H., Alizadeh, H.,Minaei-Bidgoli, B., Analoui, M.: A scalable method for improving the performance of classifiers in multiclass applications by pairwise classifiers and GA. In: 2008 fourth international conference on networked computing and advanced information management, vol. 2, pp. 137–142. IEEE (2008)

  21. Alaei, A., Pal, U., Nagabhushan, P.: Using modified contour features and SVM based classifier for the recognition of persian/arabic handwritten numerals. In: 2009 seventh international conference on advances in pattern recognition, pp. 391–394. IEEE (2009)

  22. Rashnodi, O., Sajedi, H., Abadeh, M.S., Elci, A., Munot, M., Joshi, M., Sharma, N., Gupta, N., Sharma, R., Mihajlov, B.: Persian handwritten digit recognition using support vector machines. Int. J. Comput. Appl. 29(12), 1–6 (2011)

    Google Scholar 

  23. Khorashadizadeh, S., Latif, A.: Arabic/Farsi handwritten digit recognition using histogram of oriented gradient and chain code histogram. Int. Arab. J. Inf. Technol. (IAJIT) 13(4), 5 (2016)

    Google Scholar 

  24. Boukharouba, A., Bennia, A.: Novel feature extraction technique for the recognition of handwritten digits. Appl. Comput. Inf. 13(1), 19–26 (2017)

    Google Scholar 

  25. Ali-Montazer, G., Ali Soltanshahi, M., Giveki, D.: Farsi/arabic handwritten digit recognition using quantum neural networks and bag of visual words method. Opt. Memory Neural Netw. 26(2), 117–128 (2017)

    Article  Google Scholar 

  26. Agahi, H., Mahmoodzadeh, A., Salehi, M.: Handwritten digits recognition using an ensemble technique based on the firefly algorithm. Inf. Syst. Telecommun. 2018, 136 (2018)

    Google Scholar 

  27. Mohammadpoor, M., Mehdizadeh, A., Alizadeh Noghabi, H.: A novel method for persian handwritten digit recognition using support vector machine. Majlesi J. Electr. Eng. 12(3), 63–67 (2018)

    Google Scholar 

  28. Al-wajih, E., Ghazali, R.: Improving the accuracy for offline arabic digit recognition using sliding window approach. Iran. J. Sci. Technol. Trans. Electr. Eng. 44(4), 1633–1644 (2020)

    Article  Google Scholar 

  29. Ahangari-Nanehkaran, Y., Zhang, D., Salimi, S., Chen, J., Tian, Y., Al-Nabhan, N.: Analysis and comparison of machine learning classifiers and deep neural networks techniques for recognition of farsi handwritten digits. J. Supercomput. 77(4), 3193–3222 (2021)

    Article  Google Scholar 

  30. Haghighi, F., Omranpour, H.: Stacking ensemble model of deep learning and its application to persian/arabic handwritten digits recognition. Knowl.-Based Syst. 220, 106940 (2021)

    Article  Google Scholar 

  31. Nanehkaran, Y.A., Chen, J., Salimi, S., Zhang, D.: A pragmatic convolutional bagging ensemble learning for recognition of farsi handwritten digits. J. Supercomput. 2021, 1–20 (2021)

    Google Scholar 

  32. Polakowski, W.E., Cournoyer, D.A., Rogers, S.K., DeSimio, M.P., Ruck, D.W., Hoffmeister, J.W., Raines, R.A.: Computer-aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency. IEEE Trans. Med. Imaging 16(6), 811–819 (1997)

    Article  Google Scholar 

  33. Lu, W.-L., Little, J.J.: Simultaneous tracking and action recognition using the pca-hog descriptor. In: The 3rd Canadian conference on computer and robot vision (CRV’06), pp. 6. IEEE (2006)

  34. Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 16(2), 216–224 (2011)

    Article  Google Scholar 

  35. Wang, Y., Li, M., Zhang, C., Chen, H., Yuming, L.: Weighted-fusion feature of mb-lbpuh and hog for facial expression recognition. Soft. Comput. 24(8), 5859–5875 (2020)

    Article  Google Scholar 

  36. Fonti, V., Belitser, E.: Feature selection using lasso. VU Amsterdam Res. Pap. Business Anal. 2017, 1–25 (2017)

    Google Scholar 

  37. Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Hyperparameter design criteria for support vector classifiers. Neurocomputing 55(1–2), 109–134 (2003)

    Article  MATH  Google Scholar 

  38. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8(1), 014008 (2015)

    Article  Google Scholar 

  39. Bergstra, J.S., Bardenet, R., Bengio, Y., Balázs, K.: Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 24, 2546–2554 (2011)

    Google Scholar 

  40. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning: Methods, Systems Challenges. Springer Nature, Berlin (2019)

    Book  Google Scholar 

  41. Wainer, J., Fonseca, P.: How to tune the rbf svm hyperparameters? An empirical evaluation of 18 search algorithms. Artif. Intell. Rev. 2021, 1–27 (2021)

    Google Scholar 

  42. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards Glob. Optim. 2(117–129), 2 (1978)

    MATH  Google Scholar 

  43. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nature Methods 17(3), 261–272 (2020)

    Article  Google Scholar 

  44. van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Article  Google Scholar 

  45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(1), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Emmanuelle, G., Tony, Y.: Scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  47. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  48. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.O.: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631 (2019)

  49. Google: Google colab (2021)

  50. Alaei, A., Nagabhushan, P., Pal, U.: Fine classification of unconstrained handwritten persian/arabic numerals by removing confusion amongst similar classes. In: 2009 10th international conference on document analysis and recognition, pp. 601–605. IEEE (2009)

  51. Ebrahimpour, R., Moradian, M.R., Esmkhani, A., Jafarlou, F.M.: Recognition of persian handwritten digits using characterization loci and mixture of experts. Int. J. Dig. Content Technol. Appl. 3(3), 42–46 (2009)

    Google Scholar 

  52. Alirezanejad, M., Enayatifar, R.: Farsi digit recognition via features extraction. Int. J. Phys. Sci. 6(13), 3198–3204 (2011)

    Google Scholar 

  53. Sajedi, H., Bahador, M.: Persian handwritten number recognition using adapted framing feature and support vector machines. Int. J. Comput. Intell. Appl. 15(01), 1650004 (2016)

    Article  Google Scholar 

  54. Bonyani, M., Jahangard, S., Daneshmand, M.: Persian handwritten digit, character and word recognition using deep learning. Int. J. Doc. Anal. Recogn. (IJDAR) 24(1), 133–143 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Directorate-General for Scientific Research and Technological Development (DG-RSDT) of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mehdi Bouchene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchene, M.M., Boukharouba, A. Features extraction and reduction techniques with optimized SVM for Persian/Arabic handwritten digits recognition. Iran J Comput Sci 5, 247–265 (2022). https://doi.org/10.1007/s42044-022-00106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-022-00106-9

Keywords

Navigation