Skip to main content
Log in

Multidimensional analysis of particles

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

This paper analyses several features of fundamental and composite particles using a computational approach. Different distances are used to unravel the connections among particles emerging from their characteristics. Two clustering and visualization techniques are adopted, namely hierarchical clustering (HC) and multidimensional scaling (MDS), for comparing the particles’ attributes and portraying the results in a smaller number of dimensions. In the first phase, 31 fundamental particles are assessed under the light of 6 characteristics. The Canberra and Lorentzian distances adapt well to the data set producing graphical representations consistent with the present-day knowledge. In the second phase, 88 composite particles including 21 tetraquark and 7 pentaquark candidates, described by 10 characteristics, are considered. The different cases are represented and visualized using maps created by the HC and MDS techniques. The MDS exhibits superior performance for representing the pentaquark states. Additionally, the two computational tools are tested when representing (1) normalized numerical real-valued data, and (2) categorical data. The MDS reveals that the categories’ strategy captures better the main characteristics of the data set. The numerical measures allow assessing a few unmeasured spin-parity quantum numbers \(J^P\) for 5 tetraquark candidates, namely the X(4020), X(4050), X(4055), X(4100), and X(4250). Therefore, algorithmic modeling proves to be a powerful tool for exploring numerical data sets with complex information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wankhade, K.K., Dongre, S.S., Jondhale, K.C.: Data stream classification: a review. Iran J. Comput. Sci. 3, 239–260 (2020)

    Article  Google Scholar 

  2. Zenkert, J., Klahold, A., Fathi, M.: Knowledge discovery in multidimensional knowledge representation framework. Iran J. Comput. Sci. 1, 199–216 (2018)

    Article  Google Scholar 

  3. Chaudhari, A., Mulay, P.: A bibliometric survey on incremental clustering algorithm for electricity smart meter data analysis. Iran J. Comput. Sci. 2, 197–206 (2019)

    Article  Google Scholar 

  4. Cha, S.: Taxonomy of nominal type histogram distance measures. In: Proceedings of the American conference on applied mathematics, pp. 325–330, Harvard, Massachusetts, USA (2008)

  5. Ward, J.H.J.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236 (2016)

    Article  MathSciNet  Google Scholar 

  6. Erdogmus, N., Esen, M.: Classifying universities in Turkey by hierarchical cluster analysis. Educ. Sci. 41(184), 363–382 (2016)

    Google Scholar 

  7. Winder, Z., et al.: Hierarchical clustering analyses of plasma proteins in subjects with cardiovascular risk factors identify informative subsets based on differential levels of angiogenic and inflammatory biomarkers. Front. Neurosci. 2020, 5 (2020)

    Google Scholar 

  8. Mohammadi, M.R., Rustaee, F.: Hierarchical classification of fine-art paintings using deep neural networks. Iran J. Comput. Sci. 4, 59–66 (2021)

    Article  Google Scholar 

  9. Saeed, N., Nam, H., Haq, M.I.U., Saqib, D.B.M.: A survey on multidimensional scaling. ACM Comput. Surv. 51(3), 47 (2018)

    Google Scholar 

  10. Corten, R.: Visualization of social networks in Stata using multidimensional scaling. Stata J. 11(1), 52 (2011)

    Article  Google Scholar 

  11. Cil, I.: Consumption universes based supermarket layout through association rule mining and multidimensional scaling. Expert Syst. Appl. 39(10), 8611–8625 (2012)

    Article  Google Scholar 

  12. Machado, J.T., Lopes, A.M.: Multidimensional scaling analysis of soccer dynamics. Appl. Math. Model. 45, 642–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tzagarakis, C., Jerde, T.A., Lewis, S.M., Uǧurbil, K., Georgopoulos, A.P.: Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation. Exp. Brain Res. 4(3), 369–380 (2009)

    Article  Google Scholar 

  14. Lopes, A.M., Andrade, J.P., Tenreiro Machado, J.A.: Multidimensional scaling analysis of virus diseases. Comput. Methods Programs Biomed. 131, 97–110 (2016)

    Article  Google Scholar 

  15. Lopes, A.M., Tenreiro Machado, J.A., Pinto, C.M., Galhano, A.M.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. 66(5), 647–658 (2013)

    Article  MathSciNet  Google Scholar 

  16. Tenreiro Machado, J., Hamid Mehdipour, S.: Multidimensional scaling analysis of the solar system objects. Commun. Nonlinear Sci. Numer. Simul. 79, 104923 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamid Mehdipour, S., Tenreiro Machado, J.: Cluster analysis of the large natural satellites in the solar system. Appl. Math. Model. 89(2), 1268–1278 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tenreiro Machado, J.A., Lopes, A.M.: The persistence of memory. Nonlinear Dyn. 79(1), 63–82 (2014)

    Article  Google Scholar 

  19. Lopes, A.M., Tenreiro Machado, J.A., Mata, M.E.: Analysis of global terrorism dynamics by means of entropy and state space portrait. Nonlinear Dyn. 85, 1547–1560 (2016)

    Article  Google Scholar 

  20. Tenreiro Machado, J.A., Lopes, A.M.: Multidimensional scaling and visualization of patterns in prime numbers. Commun. Nonlinear Sci. Numer. Simul. 83, 105128 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagashima, Y.: Elementary particle physics: foundations of the standard model. Wiley 2, 920 (2013)

    MATH  Google Scholar 

  22. Lopes, A.M., Tenreiro Machado, J.A.: Multidimensional scaling analysis of generalized mean discrete-time fractional order controllers. Commun. Nonlinear Sci. Numer. Simul. 95, 105657 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lopes, A.M., Tenreiro Machado, J.A.: Modeling and visualizing competitiveness in soccer leagues. Appl. Math. Model. 92, 136–148 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lopes, A.M., Tenreiro Machado, J.A.: Multidimensional scaling and visualization of patterns in global large-scale accidents. Chaos Solit. Fract. 157, 111951 (2022)

    Article  Google Scholar 

  25. Tenreiro Machado, J., Hamid Mehdipour, S.: Multidimensional analysis of near-earth asteroids. SN Comput. Sci. 3, 207 (2022)

    Article  Google Scholar 

  26. Glashow, S.L.: Partial-symmetries of weak interactions. Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  27. Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19, 1264 (1967)

    Article  Google Scholar 

  28. Salam, A.: Elementary Particle Physics. In: Nobel Symposium No. 8, Almqvist and Wiksell, Stockholm, p. 367 (1968)

  29. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)

    Article  MathSciNet  Google Scholar 

  30. Perkins, D.H.: Introduction to High Energy Physics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  31. Brambilla, N., et al.: The XYZ states: experimental and theoretical status and perspectives. Phys. Rep. 873, 1 (2020)

    Article  Google Scholar 

  32. Gell-Mann, M.: A schematic model of baryons and mesons. Phys. Lett. 8(3), 214 (1964)

    Article  Google Scholar 

  33. Richard, J.-M.: Exotic Hadrons: review and perspectives. Few-Body Syst. 57, 1185–1212 (2016)

    Article  Google Scholar 

  34. Aaij, R., et al. (LHCb collaboration): Observation of \(J/\psi \phi \) structures consistent with exotic states from amplitude analysis of \(B^+\rightarrow J/\psi \phi K^+\) decays. Phys. Rev. Lett. 118(2):022003 (2017)

  35. Aaij, R., et al. (LHCb collaboration): A model-independent study of resonant structure in \(B^+\rightarrow D^+D^-K^+\) decays. In: LHCb-PAPER-2020-024, CERN-EP-2020-158. arXiv:2009.00025 (2020)

  36. Aaij, R., et al. (LHCb collaboration): Amplitude analysis of the \(B^+\rightarrow D^+D^-K^+\) decay. LHCb-PAPER-2020-025, CERN-EP-2020-159. arXiv:2009.00026 (2009)

  37. Karliner, M., Rosner, J.L.: First exotic hadron with open heavy flavor: \(cs\bar{u}\bar{d}\) tetraquark. EFI 20/15. arXiv:2008.05993 (2008)

  38. Aaij, R., et al. (LHCb collaboration): Observation of \(J/\psi p\) resonances consistent with pentaquark states in \({\Lambda _b^0\rightarrow J/\psi K^-p}\) decays. Phys. Rev. Lett. 115:072001 (2015)

  39. Kim, S.-H., Kim, H.-C., Hosaka, A.: Heavy pentaquark states \(P_c(4380)\) and \(P_c(4450)\) in the \(J/\psi \) production induced by pion beams off the nucleon. Phys. Lett. B 763, 358–364 (2016)

    Article  Google Scholar 

  40. Aaij, R., et al. (LHCb collaboration): Observation of a narrow pentaquark state, \(P_c(4312)^+\), and of two-peak structure of the \(P_c(4450)^+\). Phys. Rev. Lett. 122:222001 (2019)

  41. Esposito, A., Pilloni, A., Polosa, A.D.: Multiquark resonances. Phys. Rep. 668, 1 (2017)

    Article  MathSciNet  Google Scholar 

  42. Ali, A., Lange, J.S., Stone, S.: Exotics: Heavy pentaquarks and tetraquarks. Prog. Part. Nucl. Phys. 97, 123 (2017)

    Article  Google Scholar 

  43. Liu, X.: An overview of XYZ new particles. Chin. Sci. Bull. 59, 3815–3830 (2014)

    Article  Google Scholar 

  44. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin, Heidelberg (2009)

    Book  MATH  Google Scholar 

  45. Cha, S.-H.: Measures between probability density functions. Int J Math Models Methods Appl Sci 1(4), 300–307 (2007)

    MathSciNet  Google Scholar 

  46. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: Database Theory-ICDT 2001, chapter On the Surprising Behavior of Distance Metrics in High Dimensional Space. Springer, Berlin, Heidelberg (2001)

    MATH  Google Scholar 

  47. Tuimala, J.: A Primer to Phylogenetic Analysis Using the PHYLIP Package. CSC-Scientific Computing Ltd., Berlin (2006)

    Google Scholar 

  48. Phylip: http://evolution.genetics.washington.edu/phylip.html (2022)

  49. Tenreiro Machado, J., Lopes, A.M.: A computational perspective of the periodic table of elements. Commun. Nonlinear Sci. Numer. Simul. 78, 104883 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tanabashi, M., et al. (Particle Data Group): Review of particle physics. Phys. Rev. D 98(3):030001 (2018)

  51. Zyla, P.A., et al. (Particle Data Group): Review of particle physics. Progress Theor. Exp. Phys. 2020(8):083C01 (2020)

  52. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  53. Meyer, C.A., Swanson, E.S.: Hybrid Mesons. Prog. Part. Nucl. Phys. 82, 21–58 (2015)

    Article  Google Scholar 

  54. Chen, H.-X., Chen, W., Liu, X., Zhu, S.-L.: The hidden-charm pentaquark and tetraquark states. Phys. Rep. 639, 1 (2016)

    Article  MathSciNet  Google Scholar 

  55. Chen, R., Liu, X., Zhu, S.-L.: Hidden-charm molecular pentaquarks and their charm-strange partners. Nucl. Phys. A 954, 406–421 (2016)

    Article  Google Scholar 

  56. Agaev, S.S., Azizi, K., Sundu, H.: Exploring \(X(5568)\) as a meson molecule. Eur. Phys. J. Plus 131(10), 351 (2016)

    Article  Google Scholar 

Download references

Funding

The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

S.H.M. wrote the main manuscript text and J.A.T.M. prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to S. Hamid Mehdipour.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, S.H., Machado, J.A.T. Multidimensional analysis of particles. Iran J Comput Sci 5, 301–315 (2022). https://doi.org/10.1007/s42044-022-00111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-022-00111-y

Keywords

Navigation