Skip to main content

Advertisement

Log in

Recent trends in computational intelligence for educational big data analysis

  • Review
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Educational big data analytics and computational intelligence have transformed our understanding of learning ability and computing power, catalyzing the emergence of Education 4.0. However, educators and researchers still struggle to identify appropriate methods to analyze the diverse data generated within educational environments. The complexity and uncertainty inherent in heterogeneous and homogeneous data often compound these challenges. This study aims to explore the potential applications of computational intelligence methods to support educational big data analysis. We begin by discussing the processes involved in educational big data analytics (EDA), including data collection, data preprocessing, feature extraction, modeling, and evaluation. We then provided an extensive review of computational intelligence and its methods, including artificial intelligence approaches, machine learning methods, deep learning methods, meta-heuristic optimization approaches, ensemble techniques, and the Markov model, as applied to educational big data analysis. Furthermore, we discussed novel application areas for computational intelligence in education, including predicting academic performance, social network analysis, detecting undesirable student behaviors, adaptive curriculum sequencing and personalization, courseware development, and decision support systems. We also mapped various computational intelligence methods to these novel application areas. Despite the progress made in educational big data analytics implementation, challenging research areas still require further investigation. These research areas include enhanced academic performance prediction, data-driven intelligent tutoring systems, adversarial machine learning, student engagement, personalized learning, and more. In this paper, we briefly discussed these ten important research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

References

  1. Bart, C., Karolina, L., Magdalena, J., Daniel, B., Michael, F., Stefania, A.: Lists of ethical, legal, societal and economic issues of big data technologies. Report. Leiden: Leiden University, pp 1–109 (2017)

  2. Romero, C., Ventura, S.: Educational data mining and learning analytics : an updated survey. Wiley Interdiscip Rev. Data Min. Knowl. Discov. 10(3), e1355 (2020). https://doi.org/10.1002/widm.1355

    Article  Google Scholar 

  3. Zhang, S., Chen, J., Zhang, W., Xu, Q., Shi, J.: Education data mining application for predicting students’ achievements of portuguese using ensemble model. Sci. J. Educ. 9(2), 58–62 (2021). https://doi.org/10.11648/j.sjedu.20210902.16

    Article  Google Scholar 

  4. Ikegwu, A.C., Nweke, H.F., Anikwe, C.V., Alo, U.R., Okonkwo, O.R.: Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions and research directions. Clust. Comput. 25, 3343–3387 (2022). https://doi.org/10.1007/s10586-022-03568-5

    Article  Google Scholar 

  5. Bao, R., Chen, Z., Obaidat, M.S.: Challenges and techniques in big data security and privacy : a review. Secur. Priv. 1(4), e13 (2018). https://doi.org/10.1002/spy2.13

    Article  Google Scholar 

  6. Verma, S., Sekhar, S., Kumar, S.: An extension of the technology acceptance model in the big data analytics system implementation environment. Inf. Process. Manag. (2018). https://doi.org/10.1016/j.ipm.2018.01.004

    Article  Google Scholar 

  7. Ikegwu, A. C., Nweke, H. F., Alo, U. R., Okonkwo, O. R.: HMCPAED: a new framework for students’ dropout prediction. In: ICT4NDS2021: ICT and Sustainability in the 5th Industrial Revolution, pp. 131–140.. Available: Ilorinuijipc.com.ng (2021)

  8. Anikwe, C.V., et al.: Mobile and wearable devices for health monitoring: review of sensors, components modules, applications and future prospects. Expert Syst. Appl. 202, 117362 (2022)

    Article  Google Scholar 

  9. Jain, P., Gyanchandani, M., Khare, N.: Big data privacy : a technological perspective and review. J. Big Data 1(3), 1–25 (2016). https://doi.org/10.1186/s40537-016-0059-y

    Article  Google Scholar 

  10. Iqbal, R., Doctor, F., More, B., Mahmud, S., Yousuf, U.: Big data analytics and computational intelligence for cyber-physical systems: recent trends and state of the art applications. Futur. Gener. Comput. Syst. 105, 766–778 (2017). https://doi.org/10.1016/j.future.2017.10.021

    Article  Google Scholar 

  11. Andrej, F., Boris, A.: Artificial Intelligence in Education. IntechOpen (2021)

    Google Scholar 

  12. Belmonte, J.L., Segura-Robles, A., Moreno-Guerrero, A.J., Parra-González, M.E.: Machine learning and big data in the impact literature. A bibliometric review with scientific mapping in web of science. Symmetry (Basel) (2020). https://doi.org/10.3390/SYM12040495

    Article  Google Scholar 

  13. Kausar, S., et al.: Mining smart learning analytics data using ensemble classifiers. Int. J. Emerg. Technol. Learn. 15(12), 81–102 (2020). https://doi.org/10.3991/ijet.v15i12.13455

    Article  Google Scholar 

  14. Chen, Y., Han, D., Xia, L.: A hidden Markov model to characterise motivation level in MOOCs learning. Int. J. Comput. Sci. Eng. 23(1), 42–49 (2020). https://doi.org/10.1504/ijcse.2020.110189

    Article  Google Scholar 

  15. Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., Ragos, O.: Implementing autoML in educational data mining for prediction tasks. Appl. Sci. 10(1), 1–27 (2020). https://doi.org/10.3390/app10010090

    Article  Google Scholar 

  16. Bakhshinategh, B., Zaiane, O.R., ElAtia, S., Ipperciel, D.: Educational data mining applications and tasks: A survey of the last 10 years. Educ. Inf. Technol. 23(1), 537–553 (2018). https://doi.org/10.1007/s10639-017-9616-z

    Article  Google Scholar 

  17. Park, K., et al.: Detecting disruptive talk in student chat-based discussion within collaborative game-based learning environments. ACM Int. Conf. Proc. Ser. (2021). https://doi.org/10.1145/3448139.3448178

    Article  Google Scholar 

  18. de Machado, M.O.C., Bravo, N.F.S., Martins, A.F., Bernardino, H.S., Barrere, E., de Souza, J.F.: Metaheuristic-based adaptive curriculum sequencing approaches: a systematic review and mapping of the literature. Artif. Intell. Rev. (2021). https://doi.org/10.1007/s10462-020-09864-z

    Article  Google Scholar 

  19. Romero, C., Ventura, S.: Data mining in education. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 3(1), 12–27 (2013). https://doi.org/10.1002/widm.1075

    Article  Google Scholar 

  20. Ellison, S. F., et al.: Costs of managerial attention and activity as a source of sticky prices. Structural estimates from an online market (No. w24680). National Bureau of Economic Research. 24680, 1–53 (2018)

  21. Talpur, N., Abdulkadir, S.J., Hasan, M.H.: A deep learning based neuro-fuzzy approach for solving classification problems. Int. Conf. Comput. Intell. (ICCI) (2020). https://doi.org/10.1109/icci51257.2020.9247639

    Article  Google Scholar 

  22. Iqbal, R., Doctor, F., More, B., Mahmud, S., Yousuf, U.: Big data analytics : Computational intelligence techniques and application areas. Technol. Forecast. Soc. Change 153, 119253 (2018). https://doi.org/10.1016/j.techfore.2018.03.024

    Article  Google Scholar 

  23. Shu, H.: Big data analytics: six techniques. Geo-Spat. Inf. Sci. 19(2), 119–128 (2016). https://doi.org/10.1080/10095020.2016.1182307

    Article  Google Scholar 

  24. Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., Navarro-Colorado, B.: A systematic review of deep learning approaches to educational data mining. Complexity (2019). https://doi.org/10.1155/2019/1306039

    Article  Google Scholar 

  25. Limna, P., Jakwatanatham, S., Siripipattanakul, S., Kaewpuang, P., Sriboonruang, P.: A review of artificial intelligence (AI) in education during the digital era. Adv. Knowl. Exec. 1(1), 1–9 (2022)

    Google Scholar 

  26. Kaddoura, S., Popescu, D.E., Hemanth, J.D.: A systematic review on machine learning models for online learning and examination systems. Peer Comput. Sci. (2022). https://doi.org/10.7717/peerj-cs.986

    Article  Google Scholar 

  27. Pejic-Bach, M., Bertoncel, T., Meško, M., Krstić, Ž: Management text mining of industry 4.0 job advertisements. Int. J. Inf. Manag 50, 416–431 (2020)

    Article  Google Scholar 

  28. Khan, S., Shakil, K., Alam, M.: PABED a tool for big education data analysis. IEEE Int. Conf. Ind. Technol. (ICIT) (2019). https://doi.org/10.1109/icit.2019.8755178

    Article  Google Scholar 

  29. Rehman, M.H.U., Ahmed, E., Yaqoob, I., Hashem, I.A.T., Imran, M., Ahmad, S.: Big data analytics in industrial IoT using a concentric computing model. IEEE Commun. Mag. 56(2), 37–43 (2018). https://doi.org/10.1109/MCOM.2018.1700632

    Article  Google Scholar 

  30. Tortonesi, M., Govoni, M., Morelli, A., Riberto, G., Stefanelli, C., Suri, N.: Taming the IoT data deluge : an innovative information - centric service model for fog computing applications. Futur. Gener. Comput. Syst. 93, 888–902 (2018). https://doi.org/10.1016/j.future.2018.06.009

    Article  Google Scholar 

  31. Pierrakeas, C., Koutsonikos, G., Lipitakis, A.D., Kotsiantis, S., Xenos, M., Gravvanis, G.A.: The Variability of the Reasons for Student Dropout in Distance Learning and the Prediction of Dropout-Prone Students, Vol 158. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-13743-4_6

    Book  Google Scholar 

  32. Moreno-Marcos, P.M., Muñoz-Merino, P.J., Maldonado-Mahauad, J., Pérez-Sanagustín, M., Alario-Hoyos, C., Delgado Kloos, C.: Temporal analysis for dropout prediction using self-regulated learning strategies in self-paced MOOCs. Comput. Educ. (2020). https://doi.org/10.1016/j.compedu.2019.103728

    Article  Google Scholar 

  33. Dai, H.N., Wong, R.C.W., Wang, H., Zheng, Z., Vasilakos, A.V.: Big data analytics for large-scale wireless networks: Challenges and opportunities. ACM Comput. Surv. 52(5), 1–29 (2019). https://doi.org/10.1145/3337065

    Article  Google Scholar 

  34. García-Gil, D., Luengo, J., García, S., Herrera, F.: Enabling smart data: noise filtering in big data classification. Inf. Sci. (NY) 479, 135–152 (2019). https://doi.org/10.1016/j.ins.2018.12.002

    Article  Google Scholar 

  35. Hussain, S., Dahan, N.A., Ba-Alwib, F.M., Ribata, N.: Educational data mining and analysis of students’ academic performance using WEKA. Indones. J. Electr. Eng. Comput. Sci. 9(2), 447–459 (2018). https://doi.org/10.11591/ijeecs.v9.i2.pp447-459

    Article  CAS  Google Scholar 

  36. Chen, J., Feng, J., Sun, X., Wu, N., Yang, Z., Chen, S.: MOOC dropout prediction using a hybrid algorithm based on decision tree and extreme learning machine. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/8404653

    Article  Google Scholar 

  37. Kemper, L., Vorhoff, G., Wigger, B.U.: Predicting student dropout: a machine learning approach. Eur. J. High. Educ. 10(1), 28–47 (2020). https://doi.org/10.1080/21568235.2020.1718520

    Article  ADS  Google Scholar 

  38. Lee, H.S., Lee, J.: Applying artificial intelligence in physical education and future perspectives. Sustainability 133, 351 (2021). https://doi.org/10.3390/su13010351

    Article  Google Scholar 

  39. Olson, D.L., Lauhoff, G.: Descriptive Data Mining. University of Nebraska, Lincoln (2019). https://doi.org/10.1007/978-981-13-7181-3_8

    Book  Google Scholar 

  40. Pelaez, K., Levine, R.A., Guarcello, M.: Using a latent class forest to identify at- risk students in higher education. J. Educ. Data Min. 11(1), 18–46 (2019)

    Google Scholar 

  41. Amelec, V., Alexa, N.S., Hugo, P.H., William, N.N., Leonardo, N.N.: Using big data to determine potential dropouts in higher education. J. Phys. (2020). https://doi.org/10.1088/1742-6596/1432/1/012077

    Article  Google Scholar 

  42. Asif, R., Merceron, A., Ali, S.A., Haider, N.G.: Analyzing undergraduate students’ performance using educational data mining. Comput. Educ. 113, 177–194 (2017). https://doi.org/10.1016/j.compedu.2017.05.007

    Article  Google Scholar 

  43. Da Xu, L., Duan, L.: Big data for cyber physical systems in industry 4.0: a survey. Enterp. Inf. Syst. 7575, 22 (2018). https://doi.org/10.1080/17517575.2018.1442934

    Article  Google Scholar 

  44. Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2(1), 1–36 (2015). https://doi.org/10.1186/s40537-015-0032-1

    Article  Google Scholar 

  45. Mueen, A., Zafar, B., Manzoor, U.: Modeling and predicting students’ academic performance using data mining techniques. Int. J. Mod. Educ. Comput. Sci. 11, 36–42 (2016). https://doi.org/10.5815/ijmecs.2016.11.05

    Article  Google Scholar 

  46. Hu, J.: A Bayesian statistics course for undergraduates: Bayesian thinking, computing, and research. J. Stat. Educ. (2020). https://doi.org/10.1080/10691898.2020.1817815

    Article  Google Scholar 

  47. Huang, A.Y.Q., Lu, O.H.T., Huang, J.C.H., Yin, C.J., Stephen, J.H.: Predicting students ’ academic performance by using educational big data and learning analytics : evaluation of classification methods and learning logs. Interact. Learn. Environ. (2019). https://doi.org/10.1080/10494820.2019.1636086

    Article  Google Scholar 

  48. Khalaf, A., Majeed, A., Akeel, W., Salah, A.: Students’ success prediction based on bayes algorithms. Int. J. Comput. Appl. 178(7), 6–12 (2017). https://doi.org/10.5120/ijca2017915506

    Article  Google Scholar 

  49. Pojon, M.: Using machine learning to predict student performance. Univ. Tampere, pp. 1–28. https://tampub.uta.fi/bitstream/handle/10024/101646/GRADU-1498472565.pdf?sequence=1 (2017)

  50. Viloria, A., Lezama, O.B.P., Varela, N.: Bayesian classifier applied to higher education dropout. Proced. Comput. Sci. 160, 573–577 (2019). https://doi.org/10.1016/j.procs.2019.11.045

    Article  Google Scholar 

  51. Brieuc, M.S.O., Waters, C.D., Drinan, D.P., Naish, K.A.: A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour. 18(4), 755–766 (2018). https://doi.org/10.1111/1755-0998.12773

    Article  PubMed  Google Scholar 

  52. Genuer, R., Poggi, J.M., Tuleau-Malot, C., Villa-Vialaneix, N.: Random forests for big data. Big Data Res. 9, 28–46 (2017). https://doi.org/10.1016/j.bdr.2017.07.003

    Article  Google Scholar 

  53. Zhang, S., Cheng, D., Deng, Z., Zong, M., Deng, X.: A novel kNN algorithm with data-driven k parameter computation. Pattern Recognit. Lett. 109, 44–54 (2018). https://doi.org/10.1016/j.patrec.2017.09.036

    Article  ADS  Google Scholar 

  54. Amra, I.A.A., Maghari, A.Y.A.: Students performance prediction using KNN and Naïve Bayesian. Int. Conf. Inf. Technol. Proc. (2017). https://doi.org/10.1109/ICITECH.2017.8079967

    Article  Google Scholar 

  55. Yu, K., Luo, S., Zhou, X., Wang, R., Sun, L.: A novel method of applying big data for analysis model of library user behavior. Adv. Econ. Bus. Manag. Res. 100, 742–745 (2019)

    Google Scholar 

  56. Yang, R., Yu, L., Zhao, Y., Yu, H., Xu, G., Wu, Y.: Big data analytics for financial market volatility forecast based on support vector machine. Int. J. Inf. Manage. 50, 452–462 (2020). https://doi.org/10.1016/j.ijinfomgt.2006.01.003

    Article  Google Scholar 

  57. Guo, B., Zhang, R., Xu, G., Shi, C., Yang, L.: Predicting students performance in educational data mining. Int. Symp. Educ. Technol. (2015). https://doi.org/10.1109/ISET.2015.33

    Article  Google Scholar 

  58. Vidhya, K., Shanmugalakshmi, R.: Modified adaptive neuro-fuzzy inference system (M-ANFIS) based multi-disease analysis of healthcare Big Data. J. Supercomput. 76(11), 8657–8678 (2020). https://doi.org/10.1007/s11227-019-03132-w

    Article  Google Scholar 

  59. Caton, S., Venugopal, S., Tn, S.B., Velamuri, V.S., Katrinis, K.: Dynamic model evaluation to accelerate distributed machine learning. IEEE Int. Congr. Big Data (2018). https://doi.org/10.1109/BigDataCongress.2018.00027

    Article  Google Scholar 

  60. Atsalakis, G.S., Atsalaki, I.G., Pasiouras, F., Zopounidis, C.: Bitcoin price forecasting with neuro-fuzzy techniques. Eur. J. Oper. Res. 276(2), 770–780 (2019). https://doi.org/10.1016/j.ejor.2019.01.040

    Article  MathSciNet  Google Scholar 

  61. Mohamed, A., Najafabadi, M.K., Wah, Y.B., Zaman, E.A.K., Maskat, R.: The state of the art and taxonomy of big data analytics: view from new big data framework. Artif. Intell. Rev. (2019). https://doi.org/10.1007/s10462-019-09685-9

    Article  Google Scholar 

  62. Poczeta, K., Kubuś, Ł, Yastrebov, A.: Analysis of an evolutionary algorithm for complex fuzzy cognitive map learning based on graph theory metrics and output concepts. BioSystems 186(2018), 39–47 (2019). https://doi.org/10.1016/j.biosystems.2019.104068

    Article  Google Scholar 

  63. Gomede, E., Gaffo, F.H., Briganó, G.U., de Barros, R.M., de Mendes, L.M.: Application of computational intelligence to improve education in smart cities. Sensors (Switzerland) 18(1), 1–26 (2018). https://doi.org/10.3390/s18010267

    Article  Google Scholar 

  64. Molina-perez, E., Esquivel-flores, O.A., Zamora-maldonado, H.: Computational intelligence for studying sustainability challenges : tools and methods for dealing with deep uncertainty and complexity. Front. Robot. AI 7, 1–18 (2020). https://doi.org/10.3389/frobt.2020.00111

    Article  ADS  Google Scholar 

  65. Rahat, I., Doctor, F., More, B.: Big data analytics: computational intelligence techniques and application areas. Technol. Forecast. Soc. Change (2018). https://doi.org/10.1016/j.techfore.2018.03.024

    Article  Google Scholar 

  66. Zhou, G., Moayedi, H., Bahiraei, M., Lyu, Z.: Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.120082

    Article  Google Scholar 

  67. Mat, U.B., Buniyamin, N.: Using neuro-fuzzy technique to classify and predict electrical engineering students’ achievement upon graduation based on mathematics competency. Indones. J. Electr. Eng. Comput. Sci. 5(3), 684–690 (2017). https://doi.org/10.11591/ijeecs.v5.i3.pp684-690

    Article  Google Scholar 

  68. Khodke, P.A., Tingane, M.G., Bhagat, A.P., Chaudhari, S.P., Ali, M.S.: Neuro fuzzy intelligent e-learning systems. IEEE. (2017). https://doi.org/10.1109/GET.2016.7916766

    Article  Google Scholar 

  69. Patel, P.S., Undavia, J., Bhatti, D.: Master course selection prediction model using modify hybrid neuro-fuzzy inference system. ICTACT J. Soft Comput. 11(01), 2205–2212 (2020). https://doi.org/10.21917/ijsc.2020.0314

    Article  Google Scholar 

  70. Petković, D., Denić, N.: Neuro-fuzzy assessment of pupil performance based on e-learning platform implementation. J. Inst. Electron. Comput. 2(1), 12–27 (2020). https://doi.org/10.33969/jiec.2020.21002

    Article  Google Scholar 

  71. Naaj, M.A., Mehdi, R., Mohamed, E.A.M., Nachouki, M.: Analysis of the factors affecting student performance using a neuro-fuzzy approach. Educ. Sci. (2023). https://doi.org/10.3390/educsci13030313

    Article  Google Scholar 

  72. Je, S.M., Huh, J.H.: Estimation of future power consumption level in smart grid: application of fuzzy logic and genetic algorithm on big data platform. Int. J. Commun. Syst. (2019). https://doi.org/10.1002/dac.4056

    Article  Google Scholar 

  73. Singh, S.P., Nayyar, A., Kumar, R., Sharma, A.: Fog computing: from architecture to edge computing and big data processing. J. Supercomput. 75(4), 2070–2105 (2019). https://doi.org/10.1007/s11227-018-2701-2

    Article  Google Scholar 

  74. Akı, O.: University exam timetabling using genetic algorithms. Int. Sci. Conf. 1, 395 (2020)

  75. Dedic, F., Bijedi, N., Gaspar, D.: Genetic algorithms as tool for development of balanced curriculum. Interdiscip. Descr. Complex Syst. 18(2-B), 175–193 (2020). https://doi.org/10.7906/indecs.18.2.8

    Article  Google Scholar 

  76. Rohani, Y., Torabi, Z., Kianian, S.: A novel hybrid genetic algorithm to predict students ’ academic performance. J. Electr. Comput. Eng. Innov. 8(2), 219–232 (2020). https://doi.org/10.22061/JECEI.2020.7230.373

    Article  Google Scholar 

  77. Cuzzocrea, A., Mumolo, E., Grasso, G.M.: An effective and efficient genetic-fuzzy algorithm for supporting advanced human-machine interfaces in big data settings. Algorithms (2020). https://doi.org/10.3390/a13010013

    Article  Google Scholar 

  78. Gupta, S., Sinha, S.: Academic staff planning, allocation and optimization using genetic algorithm under the framework of fuzzy goal programming. Proced. Comput. Sci. 172(2019), 900–905 (2020). https://doi.org/10.1016/j.procs.2020.05.130

    Article  Google Scholar 

  79. Shokouhifar, M., Pilevari, N.: Combined adaptive neuro-fuzzy inference system and genetic algorithm for e-learning resilience assessment during COVID-19 pandemic. Concurr. Comput. Pract. Exper. 34, e791 (2022). https://doi.org/10.1002/cpe.6791

    Article  Google Scholar 

  80. Poczeta, K., Papageorgiou, E.I.: Fuzzy cognitive maps optimization for decision making and prediction. Mathematics (2020). https://doi.org/10.3390/math8112059

    Article  Google Scholar 

  81. Nachazel, T.: Fuzzy cognitive maps for decision making in dynamic environments. Genet. Progr. Evolvable Mach. (2020). https://doi.org/10.1007/s10710-020-09393-2

    Article  Google Scholar 

  82. Papageorgiou, E.I.: Review study on fuzzy cognitive maps and their applications during the last decade. IEEE. (2011). https://doi.org/10.1109/FUZZY.2011.6007670

    Article  Google Scholar 

  83. Nitin, K., Sunita, S.: Comparison of ANNs, fuzzy logic and neuro- fuzzy integrated approach for diagnosis of coronary heart disease : a survey. Int. J. Comput. Sci. Mob. Comput. 2(6), 216–224 (2013)

    Google Scholar 

  84. Shihabudheen, K., Pillai, G.N.: Recent advances in neuro-fuzzy system: a survey. Knowl.-Based Syst. (2018). https://doi.org/10.1016/j.knosys.2018.04.014

    Article  Google Scholar 

  85. Adams, S., Beling, P.A., Lambert, J.H., Scherer, W.T., Cody, H.F.: Systems Engineering in Context. Springer (2019)

    Book  Google Scholar 

  86. Mousa, H.M.: Chaotic genetic-fuzzy encryption technique. Int. J. Comput. Netw. Inf. Secur. 4, 10–19 (2018). https://doi.org/10.5815/ijcnis.2018.04.02

    Article  Google Scholar 

  87. Herrera, F.: Genetic fuzzy systems : taxonomy, current research trends and prospects. Evol. Intell. (2008). https://doi.org/10.1007/s12065-007-0001-5

    Article  Google Scholar 

  88. Majid, M., Saeed, H., Fatemeh, D., Azra, M.: The challenges and advantages of fuzzy systems applications. A Preprint (2020). https://doi.org/10.13140/RG.2.2.22310.96328

    Article  Google Scholar 

  89. Chi, Y., Liu, J.: Learning of fuzzy cognitive maps with varying densities using a multi-objective evolutionary algorithm. IEEE Trans. Fuzzy Syst. (2015). https://doi.org/10.1109/TFUZZ.2015.2426314

    Article  Google Scholar 

  90. Tyagi, A.K., Rekha, G.: Machine learning with big data. SSRN Electron. J. (2019). https://doi.org/10.2139/ssrn.3356269

    Article  Google Scholar 

  91. Mathur, S., Badone, A.: A methodological study and analysis of machine learning algorithms. Int. J. Adv. Technol. Eng. Explor. 6(51), 45–49 (2019). https://doi.org/10.19101/ijatee.2019.650020

    Article  Google Scholar 

  92. Hodges, J., Mohan, S.: Machine learning in gifted education: a demonstration using neural networks. Gift. Child Q. 63(4), 243–252 (2019). https://doi.org/10.1177/0016986219867483

    Article  Google Scholar 

  93. Huang, A.Y.Q., Lu, O.H.T., Huang, J.C.H., Yin, C.J., Yang, S.J.H.: Predicting students’ academic performance by using educational big data and learning analytics: evaluation of classification methods and learning logs. Interact. Learn. Environ. 28(2), 206–230 (2020). https://doi.org/10.1080/10494820.2019.1636086

    Article  Google Scholar 

  94. Maestrales, S., Zhai, X., Touitou, I., Baker, Q., Schneider, B., Krajcik, J.: Using machine learning to score multi-dimensional assessments of chemistry and physics. J. Sci. Educ. Technol. 30(2), 239–254 (2021). https://doi.org/10.1007/s10956-020-09895-9

    Article  Google Scholar 

  95. Monllaó, O.D., Huynh, D.Q., Reynolds, M., Dougiamas, M., Wiese, D.: A supervised learning framework: using assessment to identify students at risk of dropping out of a MOOC. J. Comput. High. Educ. (2019). https://doi.org/10.1007/s12528-019-09230-1

    Article  Google Scholar 

  96. Wang, Z., et al.: Design and implementation of early warning system based on educational big data. In: 2018 5th International Conference on Systems and Informatics (ICSAI), IEEE, pp 549–553 (2018)

  97. Fischer, C., et al.: Mining big data in education: affordances and challenges. Rev. Res. Educ. 44(1), 130–160 (2020). https://doi.org/10.3102/0091732X20903304

    Article  Google Scholar 

  98. Ciolacu, M., Tehrani, A.F., Binder, L., Svasta, P.M.: Education artificial intelligence assisted higher education: early recognition system with machine learning to support students success. IEEE Int. Symp. Des. Technol. Electron. Packag. SIITME (2019). https://doi.org/10.1109/SIITME.2018.8599203

    Article  Google Scholar 

  99. Atkinson, K.: Big data real time ingestion and machine learning. In: 2018 IEEE Second International Conference on Data Stream Mining & Processing, pp. 25–31 (2018)

  100. Villegas-Ch, W., Román-Cañizares, M., Palacios-Pacheco, X.: Improvement of an online education model with the integration of machine learning and data analysis in an LMS. Appl. Sci. (2020). https://doi.org/10.3390/APP10155371

    Article  Google Scholar 

  101. Zeineddine, H., Braendle, U., Farah, A.: Enhancing prediction of student success: automated machine learning approach. Comput. Electr. Eng. 89, 1–22 (2021). https://doi.org/10.1016/j.compeleceng.2020.106903

    Article  Google Scholar 

  102. Akour, I., Alshurideh, M., Al Kurdi, B., Al-Ali, A., Salloum, S.: Using machine learning algorithms to predict people’s intention to use mobile learning platforms during the COVID-19 pandemic: Machine learning approach. JMIR Med. Educ. 7(1), 1–17 (2021). https://doi.org/10.2196/24032

    Article  Google Scholar 

  103. Sreenivasulu, D., Devi, S., Arulprakash, P., Venkataramana, S., Kazi, K.: Implementation of latest machine learning approaches for students grade prediction department of CSE. Int. J. Early Child. Spec. Educ. 14(03), 1308–5581 (2022). https://doi.org/10.9756/INT-JECSE/V14I3.1141

    Article  Google Scholar 

  104. Kanetaki, Z., Stergiou, C., Bekas, G., Troussas, C., Sgouropoulou, C.: A hybrid machine learning model for grade prediction in online engineering education. Int. J. Eng. Pedagog 12(3), 4–24 (2022). https://doi.org/10.3991/ijep.v12i3.23873

    Article  Google Scholar 

  105. Chen, S., Ding, Y.: A machine learning approach to predicting academic performance in Pennsylvania’s schools. Soc. Sci. (2023). https://doi.org/10.3390/socsci12030118

    Article  Google Scholar 

  106. Juarez-orozco, L.E., Martinez-manzanera, O., Nesterov, S.V., Kajander, S., Knuuti, J.: The machine learning horizon in cardiac hybrid imaging. Eur. J. Hybrid Imaging (2018). https://doi.org/10.1186/s41824-018-0033-3

    Article  Google Scholar 

  107. Nweke, F.H., Wah, Y., Al-garadi, M.A., Alo, R.U.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018)

    Article  Google Scholar 

  108. Tiong, L.C.O., Lee, H.J.: E-cheating prevention measures: detection of cheating at online examinations using deep learning approach: a case study. J. Latex Cl. Files XX(1–9), 2021 (2021)

    Google Scholar 

  109. Lorenzo-trueba, J., Henter, G.E., Takaki, S.: Investigating different representations for modeling and controlling multiple emotions in DNN-based speech synthesis. Speech Commun. (2018). https://doi.org/10.1016/j.specom.2018.03.002

    Article  Google Scholar 

  110. Fadlilah, U., Mahamad, A.K., Handaga, B.: The development of android for indonesian sign language using tensorflow lite and CNN: an initial study. J. Phys. (2021). https://doi.org/10.1088/1742-6596/1858/1/012085

    Article  Google Scholar 

  111. Wu, Y., Qin, X., Pan, Y., Yuan, C.: Convolution neural network based transfer learning for classification of flowers. In: IEEE 3rd International Conference on Signal and Image Processing, pp. 562–566 (2018)

  112. Felipe, C., Hernández, R.: An artificial neural network analysis of academic perfomance in higher education. Thesis: Faculty Of Psychology And Educational Sciences/ Ku Leuven. Center for professional learning & development, corporate training and lifelong learning. 2020, 1–264 (2020)

  113. Perrotta, C., Selwyn, N.: Deep learning goes to school: toward a relational understanding of AI in education. Learn. Media Technol. 45(3), 251–269 (2020). https://doi.org/10.1080/17439884.2020.1686017

    Article  Google Scholar 

  114. Nweke, F.H., Al-Garadi, M.A., Mujtaba, G., Alo, U.R., Waqas, A.: Deep learning fusion conceptual frameworks for complex human activity recognition using mobile and wearable sensors. Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. (2018). https://doi.org/10.1109/ICOMET.2018.8346364

    Article  Google Scholar 

  115. Han, Z., Xu, A.: Ecological evolution path of smart education platform based on deep learning and image detection. Microprocess. Microsyst. (2020). https://doi.org/10.1016/j.micpro.2020.103343

    Article  Google Scholar 

  116. Waheed, H., et al.: Predicting academic performance of students from VLE big data using deep learning models. Learn. Model. Comput. Hum. Behav. (2019). https://doi.org/10.1016/j.chb.2019.106189

    Article  Google Scholar 

  117. Araujo, L., Lopez-Ostenero, F., Martinez-Romo, J., Plaza, L.: Deep-learning approach to educational text mining and application to the analysis of topics’ difficulty. IEEE Access 8, 218002–218014 (2020). https://doi.org/10.1109/ACCESS.2020.3042099

    Article  Google Scholar 

  118. Adejare, S.A.: Can online discussions facilitate deep learning for students in General Education? J. Heliyon 7, e06414 (2021)

    Article  Google Scholar 

  119. Kishore, R., Patra, I., Naved, M., Veera, V., Arcinas, M.M.: Learning analytics using deep learning techniques for efficiently managing educational institutes. Mater. Today (2022). https://doi.org/10.1016/j.matpr.2021.11.416

    Article  Google Scholar 

  120. Pei, Y., Lu, G.: Design of an intelligent educational evaluation system using deep learning. IEEE Access 11, 29790–29799 (2023). https://doi.org/10.1109/ACCESS.2023.3260979

    Article  Google Scholar 

  121. Heriz, H.H., Salah, H.M., Bashir, S., Abdu, A., El Sbihi, M.M.: English alphabet prediction using artificial neural networks. Int. J. Acad. Pedagog. Res. 2(11), 8–14 (2018)

    Google Scholar 

  122. Muhammad, S.H., Lukito, E.N., Paulus, I.S.: Model detecting learning styles with artificial neural network. J. Technol. Sci. Educ. 9(1), 85–95 (2019)

    Article  Google Scholar 

  123. Sun, Y., Haghighat, F., Fung, B.C.M.: Energy and buildings a review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 221, 110022 (2020). https://doi.org/10.1016/j.enbuild.2020.110022

    Article  Google Scholar 

  124. Patrick, K., Fawei, B.: Meta-heuristic solutions to a student grouping optimization problem faced in higher education institutions. J. Adv. Math. Comput. Sci. 35(7), 61–74 (2020). https://doi.org/10.9734/jamcs/2020/v35i730304

    Article  Google Scholar 

  125. Lin, C., Liu, Z., Chang, C., Lin, Y.: A genetic algorithm-based personalized remedial learning system for learning object-oriented concepts of java. IEEE Trans. Educ. 64, 237 (2018)

    ADS  Google Scholar 

  126. Sendari, S., Bella, A., Utama, P., Susetyo, N., Putri, F., Jumadil, R.: K-means and fuzzy C-means optimization using genetic algorithm for clustering questions. Int. J. Adv. Sci. Comput. Appl. 1(1), 1–10 (2022). https://doi.org/10.47679/ijasca.v1i1.2

    Article  Google Scholar 

  127. Rastegarmoghadam, M., Ziarati, K.: Improved modeling of intelligent tutoring systems using ant colony optimization. Educ. Inf. Technol. 22(3), 1067–1087 (2017). https://doi.org/10.1007/s10639-016-9472-2

    Article  Google Scholar 

  128. Erivaldo, F.F., Yen, G.G.: Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol. Comput. 49, 62–74 (2019). https://doi.org/10.1016/j.swevo.2019.05.010

    Article  Google Scholar 

  129. Sherar, M., Zulkernine, F.: Particle swarm optimization for large-scale clustering on apache spark. IEEE (2017)

  130. Cai, X., Gao, L., Li, F.: Sequential approximation optimization assisted particle swarm optimization for expensive problems. Appl. Soft Comput. J. (2019). https://doi.org/10.1016/j.asoc.2019.105659

    Article  Google Scholar 

  131. Juan, D., Wei, Y.H.: Particle swarm optimization neural network for research on artificial intelligence college English classroom teaching framework. J. Intell. Fuzzy Syst. (2020). https://doi.org/10.3233/jifs-189400

    Article  Google Scholar 

  132. Yang, X.: An effective allocation model of computer teaching management resources based on particle swarm optimization. Int. J. Emerg. Technol. Learn. 14(18), 4–15 (2019). https://doi.org/10.3991/ijet.v14i18.11189

    Article  ADS  Google Scholar 

  133. Sheng, X., Lan, K., Jiang, X., Yang, J.: Adaptive curriculum sequencing and education management. Systems (2023). https://doi.org/10.3390/systems11010034

    Article  Google Scholar 

  134. Sarkohaki, F., Fotohi, R., Ashrafian, V.: An efficient routing protocol in mobile Ad-hoc networks by using artificial immune system. ArXiv (2020). https://doi.org/10.14569/ijacsa.2017.080473

    Article  Google Scholar 

  135. Bhadoria, V.S., Pal, N.S., Shrivastava, V.: Artificial immune system based approach for size and location optimization of distributed generation in distribution system. Int. J. Syst. Assur. Eng. Manag. 10(3), 339–349 (2019). https://doi.org/10.1007/s13198-019-00779-9

    Article  Google Scholar 

  136. Farzadnia, E., Shirazi, H., Nowroozi, A.: A novel sophisticated hybrid method for intrusion detection using the artificial immune system. J. Inf. Secur. Appl. 58, 102721 (2020)

    Google Scholar 

  137. Beg, A., Zahidul, M.I.: Advantages and limitations of genetic algorithms for clustering records. IEEE Conf. Ind. Electron. Appl. (ICIEA) (2016). https://doi.org/10.1109/ICIEA.2016.7604009

    Article  Google Scholar 

  138. Abdmouleh, Z., Gastli, A., Ben-brahim, L., Haouari, M.: Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy (2017). https://doi.org/10.1016/j.renene.2017.05.087

    Article  Google Scholar 

  139. Selvi, V., Tamilnadu, S.: Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. 5(4), 1–6 (2010)

    Google Scholar 

  140. Rasli, R.M., Aziz, N.A.A., Razali, F.M., Basir, N., Norwawi, N.M.: A preliminary survey on artificial immune systems (AIS): a review on their techniques, strengths and drawbacks. Int. J. Acad. Res. Bus. Soc. Sci. 9(14), 121–144 (2019). https://doi.org/10.6007/IJARBSS/v9-i14/6835

    Article  Google Scholar 

  141. Fernandes, D.A.B., Freire, M.M., Fazendeiro, P.A.P., Inácio, P.R.M.: Applications of artificial immune systems to computer security: a survey. J. Inf. Secur. Appl. 35, 138–159 (2017)

    Google Scholar 

  142. Kaviyarasi, R., Balasubramanian, T.: Exploring the high potential factors that affects students’ academic performance. Int. J. Educ. Manag. Eng. 8(6), 15–23 (2018). https://doi.org/10.5815/ijeme.2018.06.02

    Article  Google Scholar 

  143. Yu, C.H., Lee, H.S., Lara, E., Gan, S.: The ensemble and model comparison approaches for big data analytics in social sciences. Pract. Assess. Res. Eval. 23, 17 (2018)

    Google Scholar 

  144. Adejo, O.W., Connolly, T.: Predicting student academic performance using multi-model heterogeneous ensemble approach. J. Appl. Res. High. Educ. 10(1), 61–75 (2018). https://doi.org/10.1108/JARHE-09-2017-0113

    Article  Google Scholar 

  145. Gebretekle, T.K.: Bayesian analysis of retention and graduation of female students of higher education institution: the Case of Hawassa University (HU), Ethiopia. Am. J. Theor. Appl. Stat. 8(2), 47 (2019). https://doi.org/10.11648/j.ajtas.20190802.12

    Article  Google Scholar 

  146. Zhang, B., Sanner, S., Bouadjenek, M.R., Gupta, S.: Bayesian networks for data integration in the absence of foreign keys. IEEE Trans. Knowl. Data Eng. 32(4), 803–808 (2020). https://doi.org/10.1109/TKDE.2019.2940019

    Article  Google Scholar 

  147. Chen, X., Yuan, Y., Orgun, M.A.: Using Bayesian networks with hidden variables for identifying trustworthy users in social networks. J. Inf. Sci. 46(5), 600–615 (2020). https://doi.org/10.1177/0165551519857590

    Article  Google Scholar 

  148. Rathore, P., Kumar, D., Bezdek, J.C., Fellow, L., Rajasegarar, S., Palaniswami, M.: A rapid hybrid clustering algorithm for large volumes of high dimensional data. IEEE Trans. Knowl. Data Eng. 31(4), 641–654 (2018). https://doi.org/10.1109/TKDE.2018.2842191

    Article  Google Scholar 

  149. Ajibade, S., Dayupay, J., Oyebode, O.: Utilization of ensemble techniques for prediction of the academic performance of students. J. Optoelectron. Laser 41(6), 48 (2022)

    Google Scholar 

  150. Safarov, F., Kutlimuratov, A., Abdusalomov, A.B., Nasimov, R., Cho, Y.I.: Deep learning recommendations of e-education based on clustering and sequence. Electron (2023). https://doi.org/10.3390/electronics12040809

    Article  Google Scholar 

  151. Chen, H., Dai, Y., Gao, H., Han, D., Li, S.: Classification and analysis of MOOCs learner’s state: the study of hidden Markov model. Comput. Sci. Inf. Syst. 16(3), 849–865 (2019). https://doi.org/10.2298/CSIS181002030C

    Article  Google Scholar 

  152. Han, S.Y., Liefbroer, A.C., Elzinga, C.H.: Mechanisms of family formation: an application of Hidden Markov Models to a life course process. Adv. Life Course Res. 43, 100265 (2020). https://doi.org/10.1016/j.alcr.2019.03.001

    Article  PubMed  Google Scholar 

  153. Teoh, T.T., Nguwi, Y.Y., Elovici, Y., Cheung, N.M., Ng, W.L.: Analyst intuition based Hidden Markov Model on high speed, temporal cyber security big data. Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov. (2018). https://doi.org/10.1109/FSKD.2017.8393092

    Article  Google Scholar 

  154. Zeng, Y.: Evaluation of physical education teaching quality in colleges based on the hybrid technology of data mining and hidden markov model. Int. J. Emerg. Technol. Learn. 15(1), 4–15 (2020). https://doi.org/10.3991/ijet.v15i01.12533

    Article  MathSciNet  Google Scholar 

  155. Geigle, C., Zhai, C. X.: Modeling MOOC student behavior with two-layer hidden Markov models. In: Proceedings of the 10th International Conference on Educational Data Mining, EDM, p. 6 (2017)

  156. Zhang, Y., Yang, X.: Prediction of the development scale of vocational education using markov algorithm and countermeasures. Mob. Inf. Syst. 2022, 1–10 (2022)

  157. Xu, F., Xia, Y.: Development of speech recognition system for remote vocal music teaching based on Markov model. Soft Comput. 27(14), 10237–10248 (2023). https://doi.org/10.1007/s00500-023-08277-8

    Article  Google Scholar 

  158. Zhang, J., Wang, Y., Sun, Y., Li, G.: Strength of ensemble learning in multiclass classification of rockburst intensity. Int. J. Numer. Anal. Methods Geomech. 44(13), 1833–1853 (2020). https://doi.org/10.1002/nag.3111

    Article  Google Scholar 

  159. Tadayon, M., Pottie, G.: Predicting student performance in an educational game using a hidden markov model. IEEE Trans. Educ. (2020). https://doi.org/10.1109/TE.2020.2984900

    Article  Google Scholar 

  160. Kayte, S., Mundada, M., Gujrathi, J.: Hidden Markov model based speech synthesis: a review. Int. J. Comput. Appl. 130(3), 35–39 (2015). https://doi.org/10.5120/ijca2015906965

    Article  Google Scholar 

  161. Márquez-Vera, C., Cano, A., Romero, C., Noaman, A.Y.M., Fardoun, H.M., Ventura, S.: Early dropout prediction using data mining: a case study with high school students. Expert Syst. 33(1), 107–124 (2016). https://doi.org/10.1111/exsy.12135

    Article  Google Scholar 

  162. Yaqoob, I., et al.: Big data: From beginning to future. Int. J. Inf. Manage 36(6), 1231–1247 (2016). https://doi.org/10.1016/j.ijinfomgt.2016.07.009

    Article  Google Scholar 

  163. Chang, V.: A proposed social network analysis platform for big data analytics. Technol. Forecast. Soc. Change 130, 57–68 (2018). https://doi.org/10.1016/j.techfore.2017.11.002

    Article  Google Scholar 

  164. He, K., Li, Y., Soundarajan, S., Hopcroft, J.E.: Hidden community detection in social networks. Inf. Sci. J. 425, 92–106 (2017). https://doi.org/10.1016/j.ins.2017.10.019

    Article  MathSciNet  Google Scholar 

  165. Bayer, J., Ellison, N., Schoenebeck, S., Falk, E.B.: Facebook in context ( s ): Measuring emotional responses across time and space. New Media Soc. (2018). https://doi.org/10.1177/1461444816681522

    Article  Google Scholar 

  166. Putnik, G., Costa, E., Alves, C., Castro, H., Varela, L., Shah, V.: Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education. Int. J. Technol. Des. Educ. 26(3), 413–437 (2016). https://doi.org/10.1007/s10798-015-9318-z

    Article  Google Scholar 

  167. Wang, W., Yu, H., Miao, C.: Deep model for dropout prediction in MOOCs. ACM Int. Conf. Proc. Ser. 1306, 26–32 (2017). https://doi.org/10.1145/3126973.3126990

    Article  Google Scholar 

  168. Teruel, M., Alemany, L.A.: Co-embeddings for student modeling in virtual learning environments. Proc. Conf. User Model. Adapt. Pers. (2018). https://doi.org/10.1145/3209219.3209227

    Article  Google Scholar 

  169. Xing, W., Du, D.: Dropout prediction in MOOCs: using deep learning for personalized intervention. J. Educ. Comput. Res. 57(3), 547–570 (2019). https://doi.org/10.1177/0735633118757015

    Article  Google Scholar 

  170. Jin, C.: MOOC student dropout prediction model based on learning behavior features and parameter optimization. Interact. Learn. Environ. (2020). https://doi.org/10.1080/10494820.2020.1802300

    Article  Google Scholar 

  171. Bernard, J., Chang, T.W., Popescu, E., Graf, S.: Learning style Identifier: improving the precision of learning style identification through computational intelligence algorithms. Expert Syst. Appl. 75, 94–108 (2017). https://doi.org/10.1016/j.eswa.2017.01.021

    Article  Google Scholar 

  172. Lang, C.: Handbook of learning analytics. Handb. Learn. Anal. (2017). https://doi.org/10.18608/hla17

    Article  Google Scholar 

  173. Sentance, S., Csizmadia, A.: Computing in the curriculum: challenges and strategies from a teacher’s perspective. Educ. Inf. Technol. 22(2), 469–495 (2017). https://doi.org/10.1007/s10639-016-9482-0

    Article  Google Scholar 

  174. Meder, M., Till, P., Sahin, A.: A primer on data-driven gamification design. http://ceur-ws.org (2017)

  175. Jing, S., Tang, Y., Liu, X., Gong, X., Cui, W., Liang, J.: A parallel education based intelligent tutoring systems framework. IEEE Int. Conf. Networking, Sens. Control. ICNSC (2020). https://doi.org/10.1109/ICNSC48988.2020.9238052

    Article  Google Scholar 

  176. Tang, Y., Liang, J., Hare, R., Wang, F.Y.: A personalized learning system for parallel intelligent education. IEEE Trans. Comput. Soc. Syst. 7(2), 352–361 (2020). https://doi.org/10.1109/TCSS.2020.2965198

    Article  Google Scholar 

  177. Moon, J., Do, J., Lee, D., Choi, G.W.: A conceptual framework for teaching computational thinking in personalized OERs. Smart Learn. Environ (2020). https://doi.org/10.1186/s40561-019-0108-z

    Article  Google Scholar 

  178. Lee, M., Ferwerda, B.: Personalizing online educational tools. Proc. ACM Work. Theory-Informed User Model. Tailoring Pers. Interfaces 5, 5 (2017). https://doi.org/10.1145/3039677.3039680

    Article  Google Scholar 

  179. Singh, S., Sunil, P.L.: Educational courseware evaluation using machine learning techniques. IEEE Conf. e-Learn. e-Manag. e-Serv. (2013). https://doi.org/10.1109/IC3e.2013.6735969

    Article  Google Scholar 

  180. Jing, L.: Construction of modern educational technology MOOC platform based on courseware resource storage system. Int. J. Emerg. Technol. Learn. 12(9), 105–116 (2017). https://doi.org/10.3991/ijet.v12.i09.7491

    Article  Google Scholar 

  181. Sugiyarti, E., Jasmi, K.A., Basiron, B., Huda, M., Shankar, K., Maseleno, A.: Decision support system of scholarship grantee selection using data mining. Int. J. Pure Appl. Math. 119(15), 2239–2249 (2018)

    Google Scholar 

Download references

Funding

There is no external funding received by the authors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in conducting the research. The authors drafted, proof–read, and reviewed the manuscript.

Corresponding authors

Correspondence to Anayo Chukwu Ikegwu or Henry Friday Nweke.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this article.

Ethical statement

The submitted work should be original and has not been published elsewhere in any form or language to our knowledge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikegwu, A.C., Nweke, H.F. & Anikwe, C.V. Recent trends in computational intelligence for educational big data analysis. Iran J Comput Sci 7, 103–129 (2024). https://doi.org/10.1007/s42044-023-00158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-023-00158-5

Keywords

Navigation