Skip to main content

Advertisement

Log in

Multi-band metasurface design for seamless communication and sensing enhancement

  • Regular Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

With the rapid development of the Internet of Things and wireless technology, more and more intelligent applications have emerged, covering various frequency bands, such as sub-6 GHz, satellite bands and millimeter wave bands. However, the quality of communication and perception has been affected by link attenuation due to non-line-of-sight environments and high frequency ranges. Recently, metasurfaces have emerged as a promising approach to enhance links. However, their focus is mainly on a single frequency band, limiting their potential in multi-band applications. This article introduces a multi-band programmable metasurface solution that effectively improves communication quality and perception performance due to its low cost, low power consumption and easy deployment. This work introduces meta-atoms with different size parameters into the meta-surface and optimizes the resonance characteristics between elements to achieve electromagnetic wave focusing in the 5.69–5.96 GHz, 11.25–20.86 GHz and 23.37–27.56 GHz frequency bands. The beamforming technology of the element surface significantly reduces clutter interference, improves the sensing and communication distance, and its encoding capability supports the pointing of multiple target locations. This metasurface offers promising applications in the fields of seamless wireless communication and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Chen, L., Hu, W., Jamieson, K., Chen, X., Fang, D., Gummeson, J.: Pushing the physical limits of \(\{\)IoT\(\}\) devices with programmable metasurfaces. In: 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), pp. 425–438 (2021)

  • Chen, L., Yu, B., Ren, J., Gummeson, J., Zhang, Y.: Towards seamless wireless link connection. In: 21st ACM International Conference on Mobile Systems, Applications, and Services (MobiSys 23) (2023)

  • Cho, K.W., Ghasempour, Y., Jamieson, K.: Towards dual-band reconfigurable metamaterial surfaces for satellite networking. arXiv preprint arXiv:2206.14939 (2022)

  • Dai, J.Y., Zhao, J., Cheng, Q., Cui, T.J.: Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl. 7(1), 90 (2018)

    Article  Google Scholar 

  • Di Renzo, M., Zappone, A., Debbah, M., Alouini, M.-S., Yuen, C., De Rosny, J., Tretyakov, S.: Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Select. Areas Commun. 38(11), 2450–2525 (2020)

    Article  Google Scholar 

  • Foo, S.: Liquid-crystal reconfigurable metasurface reflectors. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 2069–2070 (2017)

  • Han, J., Li, L., Liu, G., Wu, Z., Shi, Y.: A wideband 1 bit 12\(\times\) 12 reconfigurable beam-scanning reflectarray: Design, fabrication, and measurement. IEEE Antennas Wirel. Propag. Lett. 18(6), 1268–1272 (2019)

    Article  Google Scholar 

  • Huang, C., Hu, S., Alexandropoulos, G.C., Zappone, A., Yuen, C., Zhang, R., Di Renzo, M., Debbah, M.: Holographic mimo surfaces for 6g wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 27(5), 118–125 (2020)

    Article  Google Scholar 

  • Huang, C., Liao, J., Ji, C., Peng, J., Yuan, L., Luo, X.: Graphene-integrated reconfigurable metasurface for independent manipulation of reflection magnitude and phase. Adv. Opt. Mater. 9(7), 2001950 (2021)

    Article  Google Scholar 

  • Islam, S.M., Motoyama, N., Pacheco, S., Lubecke, V.M.: Non-contact vital signs monitoring for multiple subjects using a millimeter wave fmcw automotive radar. In: 2020 IEEE/MTT-S International Microwave Symposium (IMS), pp. 783–786 (2020)

  • Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  • Kumar, M., Veeraraghavan, A., Sabharwal, A.: Distanceppg: Robust non-contact vital signs monitoring using a camera. Biomed. Opt. Express 6(5), 1565–1588 (2015)

    Article  Google Scholar 

  • Li, X., Feng, C., Wang, X., Zhang, Y., Xie, Y., Chen, X.: Rf-bouncer: A programmable dual-band metasurface for sub-6 wireless networks. In: 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pp. 389–404 (2023)

  • Liu, C., Bai, Y., Zhao, Q., Yang, Y., Chen, H., Zhou, J., Qiao, L.: Fully controllable pancharatnam-berry metasurface array with high conversion efficiency and broad bandwidth. Sci. Rep. 6(1), 34819 (2016)

    Article  Google Scholar 

  • Ma, Q., Bai, G.D., Jing, H.B., Yang, C., Li, L., Cui, T.J.: Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl. 8(1), 98 (2019)

    Article  Google Scholar 

  • Qiu, Y., Tang, S., Cai, T., Xu, H., Ding, F.: Fundamentals and applications of spin-decoupled pancharatnam-berry metasurfaces. Front. Optoelectr. 14(2), 134–147 (2021)

    Article  Google Scholar 

  • Rawski, M., Selvaraj, H., Łuba, T.: An application of functional decomposition in rom-based fsm implementation in fpga devices. J. Syst. Archit. 51(6–7), 424–434 (2005)

    Article  Google Scholar 

  • Saifullah, Y., Chen, Q., Yang, G.-M., Waqas, A.B., Xu, F.: Dual-band multi-bit programmable reflective metasurface unit cell: design and experiment. Opt. Express 29(2), 2658–2668 (2021)

    Article  Google Scholar 

  • Sathyan, A., Milivojevic, N., Lee, Y.-J., Krishnamurthy, M., Emadi, A.: An fpga-based novel digital pwm control scheme for bldc motor drives. IEEE Trans. Ind. Electron. 56(8), 3040–3049 (2009)

    Article  Google Scholar 

  • Su, P., Zhao, Y., Jia, S., Shi, W., Wang, H.: An ultra-wideband and polarization-independent metasurface for rcs reduction. Sci. Rep. 6(1), 20387 (2016)

    Article  Google Scholar 

  • Sun, W., Wirthlin, M.J., Neuendorffer, S.: Fpga pipeline synthesis design exploration using module selection and resource sharing. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26(2), 254–265 (2007)

    Article  Google Scholar 

  • Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D., Pugh, C.: Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiol. Meas. 35(5), 807 (2014)

    Article  Google Scholar 

  • Wang, X., Ding, J., Zheng, B., An, S., Zhai, G., Zhang, H.: Simultaneous realization of anomalous reflection and transmission at two frequencies using bi-functional metasurfaces. Sci. Rep. 8(1), 1876 (2018)

    Article  Google Scholar 

  • Wu, J., Shen, Z., Ge, S., Chen, B., Shen, Z., Wang, T., Zhang, C., Hu, W., Fan, K., Padilla, W.: Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Lett. 116(13), 131104 (2020)

    Article  Google Scholar 

  • Zhang, L., Wang, Z.X., Shao, R.W., Shen, J.L., Chen, X.Q., Wan, X., Cheng, Q., Cui, T.J.: Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Trans. Antennas Propag. 68(4), 2984–2992 (2019)

    Article  Google Scholar 

  • Zhao, J., Yang, X., Dai, J.Y., Cheng, Q., Li, X., Qi, N.H., Ke, J.C., Bai, G.D., Liu, S., Jin, S.: Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev. 6(2), 231–238 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant No. 62202256, the China Postdoctoral Science Foundation No. 2022M721825, the Research on AI-Driven Union Office Decision-Making Intelligence No. 24XYJS018 and the 2023 Beijing Higher Education Undergraduate Teaching Reform and Innovation Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Chen, L. & Chen, H. Multi-band metasurface design for seamless communication and sensing enhancement. CCF Trans. Pervasive Comp. Interact. 6, 244–254 (2024). https://doi.org/10.1007/s42486-024-00155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-024-00155-y

Keywords

Navigation