Skip to main content
Log in

The multiplier based on quantum Fourier transform

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

In the paper, we first present a quantum multiplier based on quantum Fourier transform (QFT), which is composed by a series of double-controlled phase gates, the control qubits are from the two multipliers, and the controlled qubits are in the ancillary state. By the sequential usage of the double-controlled phase gates, the product could be obtained after the inverse quantum Fourier transform (IQFT) on the final ancillary output state. Then, we further optimize the proposed quantum multiplier. The circuit analysis shows that the proposed multiplier could reduce the number of qubits in ancillary, and the multiplication result of finite qubits can be directly obtained by using fewer quantum gates. The optimization has reduced the resource cost of quantum multiplier greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbar, E.P.A., Haghparast, M., Navi, K.: Novel design of a fast reversible Wallace sign multiplier circuit in nanotechnology. Microelectron. J. 42, 973–981 (2011)

    Google Scholar 

  • Alvarez-Sanchez, J.J., Alvarez-Bravo, J.V., Nieto, L.M.: Journal of Physics: Conference Series, 012013. IOP Publishing, Bristol (2008)

  • Baugh, C.R., Wooly, B.A.: A two’s complement parallel array multiplication algorithm. IEEE Trans. Comput. 100, 1045–1047 (1973)

    MATH  Google Scholar 

  • Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Inf. Comput. 3, 175 (2003)

    MathSciNet  MATH  Google Scholar 

  • Chen, W.J., Ye, Z.K., Li, L.Z.: Characterization of exact one-query quantum algorithms. Phys. Rev. A 101, 2 (2020)

    MathSciNet  Google Scholar 

  • Chudasama, A., Sasama, T.N., Yadav, J.: An efficient design of Vedic multiplier using ripple carry adder in quantum-dot cellular automata. Comput. Electr. Eng. 65, 527–542 (2018)

    Google Scholar 

  • Draper, T.G., Kutin, S.A., Rains, E.M., et al.: A logarithmic-depth quantum carry-lookahead adder. Quantum Inf. Comput. 6, 351–369 (2006)

    MathSciNet  MATH  Google Scholar 

  • Draper, T.G.: Addition on a Quantum Computer. arXiv: quant-ph/0008033 (2000)

  • Edrisi Arani, I., Rezai, A.: Novel circuit design of serial-parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 17, 1771–1779 (2018)

    Google Scholar 

  • Faraji, H., Mosleh, M.: A fast Wallace-based parallel multiplier in quantum-dot cellular automata. Int. J Nano Dimens. 9, 68–78 (2018)

    Google Scholar 

  • Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    MathSciNet  Google Scholar 

  • Hu, F., Wang, B.N., Wang, N., et al.: Quantum machine learning with D-wave quantum computer. Quantum Engineering. 1, e12 (2019)

    Google Scholar 

  • Kotiyal, S., Thapliyal, H., Ranganathan, N.: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 545–550. IEEE (2014)

  • Li, K.R., Wei, S.J., Zhang, F.H., et al.: Optimizing a Polynomial Function on a Quantum Simulator. arXiv:1804.05231 (2018)

  • Muoz-Coreas, E., Thapliyal, H.: Quantum circuit design of a t-count optimized integer multiplier. Elsevier, IEEE Trans. Comput. 68, 729–739 (2018)

    MathSciNet  MATH  Google Scholar 

  • Panahi, M.M., Hashemipour, O., Navi, K.: A novel design of a multiplier using reversible ternary gates. IETE J. Res. 1–10 (2019)

  • Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factorization algorithm. Quantum Inf. Comput. 14, 649–682 (2014)

    MathSciNet  Google Scholar 

  • Peng, W.C., Wang, B.N., Hu, F., et al.: Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Sci. China Phys. Mech. Astron. 62, 60311 (2019)

    Google Scholar 

  • Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16, 6 (2017)

    MathSciNet  MATH  Google Scholar 

  • Shang, T., Tang, Y., Chen, R., Liu, J.: Full quantum one-way function for quantum cryptography. Quantum Eng. 2, e32 (2020)

    Google Scholar 

  • Shao, C., Li, Y., Li, H.: Quantum algorithm design: techniques and applications. J. Syst. Sci. Complex. 32, 375–452 (2019)

    MathSciNet  MATH  Google Scholar 

  • Shao, E., Zhan, W., Yuan, G.J., et al.: Wormhole optical network: a new architecture to solve long diameter problem in exascale computer. CCF Trans. High Perform. Comput. 1, 73–91 (2019)

    Google Scholar 

  • Shor, P.W.: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  • Wang, X.M.: Quest towards “factoring larger integers with commercial D-wave quantum annealing machines”. Sci. China Phys. Mech. Astron. 62, 960331 (2019)

    Google Scholar 

  • Wang, P., Tian, S., Sun, Z., Xie, N., et al.: Quantum algorithms for hash preimage attacks. Quantum Eng. 2, e36 (2020)

    Google Scholar 

  • Wen, J.W., Kong, X.Y., Wei, S.J., et al.: Experimental realization of quantum algorithms for linear system inspired by adiabatic quantum computing. Phys. Rev. A 99(1), 012320 (2019)

    Google Scholar 

  • Ye, Z.K., Li, L.Z., Wang, Y.Y., et al.: Quantum Speedup of Twin Support Vector Machines. arXiv:1902.08907 (2019)

  • Ying, M.S., Feng, Y.: An algebraic language for distributed quantum computing. IEEE Trans. Comput. 58, 728–743 (2009)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Y., Ni, Q.: Recent advances in quantum machine learning. Quantum Eng. 2, e34 (2020)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (61871234), and Postgraduate Research Practice Innovation Program of Jiangsu Province (Grant No. KYCX19_0900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengMei Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Wang, X. & Zhao, S. The multiplier based on quantum Fourier transform. CCF Trans. HPC 2, 221–227 (2020). https://doi.org/10.1007/s42514-020-00040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-020-00040-x

Keywords

Navigation