Skip to main content
Log in

On Addressing the Low Rating Prediction Coverage in Sparse Datasets Using Virtual Ratings

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Collaborative filtering-based recommendation systems consider users’ likings and interests, articulated as ratings within a database to offer personalized recommendations. Unfortunately, many collaborative filtering datasets exhibit the “grey sheep” phenomenon, a state where no near neighbours can be found for certain users. This phenomenon is extremely frequent in datasets where users, on average, have rated only a small percentage of the available items, which are termed as sparse datasets. This paper addresses the “grey sheep” problem by proposing the virtual ratings concept and introduces an algorithm for virtual rating creation on the basis of actual ratings. The novelty behind this concept is that the introduction of the virtual ratings effectively reduces the user–item rating matrix sparsity, thus alleviating the aforementioned problem. The proposed algorithm, which is termed as CFVR, has been extensively evaluated and the results show that it achieves to considerably improve the capability of a collaborative filtering system to formulate tailored recommendations for each user, when operating on sparse datasets, while at the same time improves rating prediction quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Balabanovic M, Shoham Y. Fab: content-based, collaborative recommendation. Commun ACM. 1997;40(3):66–72. https://doi.org/10.1145/245108.245124.

    Article  Google Scholar 

  2. Ekstrand M, Riedl R, Konstan J. Collaborative filtering recommender systems. Found Trends Hum Comput Interact. 2011;4(2):81–173. https://doi.org/10.1561/1100000009.

    Article  Google Scholar 

  3. Margaris D, Vasilopoulos D, Vassilakis C, Spiliotopoulos D. Improving collaborative filtering’s rating prediction coverage in sparse datasets through the introduction of virtual near neighbors. In: Proceedings of the 2019 10th international conference on information, intelligence, systems and applications (IISA). 2019. p. 1–8. https://doi.org/10.1109/IISA.2019.8900678.

  4. Margaris D, Spiliotopoulos D, Karagiorgos G, Vassilakis C. An algorithm for density enrichment of sparse collaborative filtering datasets using robust predictions as derived ratings. Algorithms. 2020;13(7):174. https://doi.org/10.3390/a13070174.

    Article  Google Scholar 

  5. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. IEEE Comput. 2009;42(8):42–9. https://doi.org/10.1109/MC.2009.263.

    Article  Google Scholar 

  6. McAuley JJ, Targett C, Shi Q, Van den Hengel A. Image-Based recommendations on styles and substitutes. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval. 2015. p. 43–52. https://doi.org/10.1145/2766462.2767755..

  7. Margaris D, Vassilakis C. Improving collaborative filtering’s rating prediction quality in dense datasets, by pruning old ratings. In: Proceedings of the 2017 IEEE symposium on computers and communications (ISCC). 2017. p. 1168–1174. https://doi.org/10.1109/ISCC.2017.8024683..

  8. Margaris D, Vassilakis C. Enhancing user rating database consistency through pruning. Trans Large Scale Data Knowl Cent Syst. 2017;XXXIV:33–64. https://doi.org/10.1007/978-3-662-55947-5_3.

    Article  Google Scholar 

  9. Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A. A survey on concept drift adaptation. ACM Comput Surv. 2013. https://doi.org/10.1145/2523813.

    Article  MATH  Google Scholar 

  10. Lu J, Liu A, Song Y, Zhang G. Data-driven decision support under concept drift in streamed big data. Complex Intell Syst. 2020;6(1):157–63. https://doi.org/10.1007/s40747-019-00124-4.

    Article  Google Scholar 

  11. Paudel R, Eberle W. An approach for concept drift detection in a graph stream using discriminative subgraphs. ACM Trans Knowl Discov Data. 2020;14(6):1–25. https://doi.org/10.1145/3406243.

    Article  Google Scholar 

  12. Gong S. A collaborative filtering recommendation algorithm based on user clustering and item clustering. J Softw. 2010;5(7):745–52.

    Article  Google Scholar 

  13. Chen J, Zhao C, Uliji CL. Collaborative filtering recommendation algorithm based on user correlation and evolutionary clustering. Complex Intell Syst. 2020;6(1):147–56. https://doi.org/10.1007/s40747-019-00123-5.

    Article  Google Scholar 

  14. Pham M, Cao Y, Klamma R, Jarke M. A clustering approach for collaborative filtering recommendation using social network analysis. J Univ Comput Sci. 2011;17(4):583–604. https://doi.org/10.3217/jucs-017-04-0583.

    Article  Google Scholar 

  15. Kalaï A, Zayani CA, Amous I, Abdelghani W, Sèdes F. Social collaborative service recommendation approach based on user’s trust and domain-specific expertise. Futur Gener Comput Syst. 2018;80:355–67. https://doi.org/10.1016/j.future.2017.05.036.

    Article  Google Scholar 

  16. Margaris D, Spiliotopoulos D, Vassilakis C. Social relations versus near neighbours: reliable recommenders in limited information social network collaborative filtering for online advertising. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2019). 2019. p. 1160–1167. https://doi.org/10.1145/3341161.3345620..

  17. Sun J, Ying R, Jiang Y, He J, Ding Z. Leveraging friend and group information to improve social recommender system. Electron Commer Res. 2020;20(1):147–72. https://doi.org/10.1007/s10660-019-09390-3.

    Article  Google Scholar 

  18. Vozalis M, Markos A, Margaritis K. A hybrid approach for improving prediction coverage of collaborative filtering. Artif Intell Appl Innov. 2009;296:491–8. https://doi.org/10.1007/978-1-4419-0221-4_57.

    Article  Google Scholar 

  19. Zhang S, Yao L, Xu X. Autosvd++: an efficient hybrid collaborative filtering model via contractive auto-encoders. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. 2017. p. 957–960. https://doi.org/10.1145/3077136.3080689..

  20. Yang X, Zhou S, Cao M. An approach to alleviate the sparsity problem of hybrid collaborative filtering based recommendations: the product-attribute perspective from user reviews. Mob Netw Appl. 2020;25:376–90. https://doi.org/10.1007/s11036-019-01246-2.

    Article  Google Scholar 

  21. Walek B, Fojtik V. A hybrid recommender system for recommending relevant movies using an expert system. Expert Syst Appl. 2020;158:113452. https://doi.org/10.1016/j.eswa.2020.113452.

    Article  Google Scholar 

  22. Adamopoulos P. Beyond rating prediction accuracy: on new perspectives in recommender systems. In: Proceedings of the 7th ACM conference on recommender systems (RecSys ′13). 2013. p. 459–462. https://doi.org/10.1145/2507157.2508073..

  23. Margaris D, Kobusińska A, Spiliotopoulos D, Vassilakis C. An adaptive social network-aware collaborative filtering algorithm for improved rating prediction accuracy. IEEE Access. 2020;8:68301–10. https://doi.org/10.1109/ACCESS.2020.2981567.

    Article  Google Scholar 

  24. Margaris D, Vassilakis C. Improving collaborative filtering's rating prediction coverage in sparse datasets by exploiting user dissimilarity. In: Proceedings of the 4th IEEE international conference on big data intelligence and computing. 2018. p. 1054–1059. https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00150..

  25. Wang P, Huang H, Zhu J, Qi L. A trust-based prediction approach for recommendation system. In: Proceedings of the world congress on services 2018, LNCS, vol. 10975. Cham, Springer. 2018. p. 157–164. https://doi.org/10.1007/978-3-319-94472-2_12..

  26. Zarei MR, Moosavi MR. A memory-based collaborative filtering recommender system using social ties. In: Proceedings of the 4th international conference on pattern recognition and image analysis (IPRIA). 2019. p. 263–267. https://doi.org/10.1109/PRIA.2019.8786023..

  27. Wen H, Ding G, Liu C, Wang J. Matrix factorization meets cosine similarity: addressing sparsity problem in collaborative filtering recommender system. Proc APWeb. 2014;2014:306–17. https://doi.org/10.1007/978-3-319-11116-2_27.

    Article  Google Scholar 

  28. Guan X, Li C, Guan Y. Matrix factorization with rating completion: an enhanced SVD model for collaborative filtering recommender systems. IEEE Access. 2017;5:27668–78. https://doi.org/10.1109/ACCESS.2017.2772226.

    Article  Google Scholar 

  29. Poirier D, Fessant F, Tellier I. Reducing the cold-start problem in content recommendation through opinion classification. In: Proceedings of the 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology. 2010. p. 204–207. https://doi.org/10.1109/WI-IAT.2010.87..

  30. Moshfeghi Y, Piwowarski B, Jose JM. Handling data sparsity in collaborative filtering using emotion and semantic based features. In: Proceedings of 34th international ACM SIGIR conference. 2011. p. 625–634. https://doi.org/10.1145/2009916.2010001..

  31. Margaris D, Vassilakis C, Spiliotopoulos D. Handling uncertainty in social media textual information for improving venue recommendation formulation quality in social networks. Soc Netw Anal Min. 2019;64:1–19. https://doi.org/10.1007/s13278-019-0610-x.

    Article  Google Scholar 

  32. Margaris D, Vassilakis C. Improving collaborative filtering’s rating prediction coverage in sparse datasets by exploiting the ‘friend of a friend’ concept. Int J Big Data Intell. 2020;7(1):47–57. https://doi.org/10.1504/IJBDI.2020.106178.

    Article  Google Scholar 

  33. O′Mahony MP, Hurley NJ, Silvestre G. Detecting noise in recommender system databases. In: Proceedings of the 11th international conference on intelligent user interfaces. 2006. p. 109–115. https://doi.org/10.1145/1111449.1111477..

  34. Chung CY, Hsu PY, Huang SH. βP: a novel approach to filter out malicious rating profiles from recommender systems. Decis Support Syst. 2013;55(1):314–25. https://doi.org/10.1016/j.dss.2013.01.020.

    Article  Google Scholar 

  35. Lee JS, Zhu D. Shilling attack detection-a new approach for a trustworthy recommender system. INFORMS J Comput. 2012;24(1):117–31. https://doi.org/10.1287/ijoc.1100.0440.

    Article  MATH  Google Scholar 

  36. Toledo RY, Mota YC. Correcting noisy ratings in collaborative recommender systems. Knowl Based Syst. 2015;76:96–108. https://doi.org/10.1016/j.knosys.2014.12.011.

    Article  Google Scholar 

  37. Yera R, Castro J, Martínez L. A fuzzy model for managing natural noise in recommender systems. Appl Soft Comput. 2016;40:187–98. https://doi.org/10.1016/j.asoc.2015.10.060.

    Article  Google Scholar 

  38. Patra BK, Launonen R, Ollikainen V, Nandib S. A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data. Knowl Based Syst. 2015;82:163–77. https://doi.org/10.1016/j.knosys.2015.03.001.

    Article  Google Scholar 

  39. Bag S, Kumar S, Awasthi A, Tiwaria K. A noise correction-based approach to support a recommender system in a highly sparse rating environment. Decis Support Syst. 2019;118:46–57. https://doi.org/10.1016/j.dss.2019.01.001.

    Article  Google Scholar 

  40. Amazon product data. Available online: http://jmcauley.ucsd.edu/data/amazon/links.html. Accessed 4 Apr 2019.

  41. McAuley JJ, Pandey R, Leskovec J. Inferring networks of substitutable and complementary products. In: Proceedings of the 21th ACM SIGKDD conference. 2015. p. 785–794. https://doi.org/10.1145/2783258.2783381.

  42. MovieLens datasets. http://grouplens.org/datasets/movielens/. Accessed 4 Apr 2019.

  43. Harper FM, Konstan JA. The MovieLens datasets: history and context. ACM Trans Interact Intell Syst. 2015;5(4):19. https://doi.org/10.1145/2827872.

    Article  Google Scholar 

  44. Zanker M, Jessenitschnig M, Jannach D, Gordea S. Comparing recommendation strategies in a commercial context. IEEE Intell Syst. 2007;2(3):69–73. https://doi.org/10.1109/MIS.2007.49.

    Article  Google Scholar 

  45. Ramadhan Z, Siahaan A, Mesran M. Prim and Floyd–Warshall comparative algorithms in shortest path problem. In: Proceedings of the joint workshop KO2PI and the 1st international conference on advance and scientific innovation. 2018. p. 47–58. https://doi.org/10.4108/eai.23-4-2018.2277598..

  46. Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst. 2004;22(1):5–53. https://doi.org/10.1145/963770.963772.

    Article  Google Scholar 

  47. Tahmasebi H, Ravanmehr R, Mohamadrezaei R. Social movie recommender system based on deep autoencoder network using Twitter data. Neural Comput Appl. 2021;33:1607–23. https://doi.org/10.1007/s00521-020-05085-1.

    Article  Google Scholar 

  48. Hu GN, Dai XY, Qiu FY, Xia R, Li T, Huang SJ, Chen JJ. Collaborative filtering with topic and social latent factors incorporating implicit feedback. ACM Trans Knowl Discov Data (TKDD). 2018;12(2):1–30. https://doi.org/10.1145/3127873.

    Article  Google Scholar 

  49. Aivazoglou M, Roussos A, Margaris D, Vassilakis C, Ioannidis S, Polakis J, Spiliotopoulos D. A fine-grained social network recommender system. Soc Netw Anal Min. 2020;8:1–18. https://doi.org/10.1007/s13278-019-0621-7.

    Article  Google Scholar 

  50. Guy I. Social recommender systems. In: Ricci F, Rokach L, Shapira B, editors. Recommender systems handbook. Boston: Springer; 2015. p. 511–43.

    Chapter  Google Scholar 

  51. Zuo X, Liu X, Yang B. Coupled low rank approximation for collaborative filtering in social networks. IEEE Access. 2018;6:13326–35. https://doi.org/10.1109/ACCESS.2018.2806488.

    Article  Google Scholar 

  52. Ojagh S, Malek MR, Saeedi S, Liang S. A location-based orientation-aware recommender system using IoT smart devices and social networks. Futur Gener Comput Syst. 2020;108:97–118. https://doi.org/10.1016/j.future.2020.02.041.

    Article  Google Scholar 

  53. Subramaniyaswamy V, Manogaran G, Logesh R, Vijayakumar V, Chilamkurti N, Malathi D, Senthilselvan N. An ontology-driven personalized food recommendation in IoT-based healthcare system. J Supercomput. 2019;75(6):3184–216. https://doi.org/10.1007/s11227-018-2331-8.

    Article  Google Scholar 

  54. Ren C, Chen J, Kuo Y, Wu D, Yang M. Recommender system for mobile users. Multimed Tools Appl. 2018;77(4):4133–53. https://doi.org/10.1007/s11042-017-4527-y.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Vassilakis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This research is solely based on anonymized datasets, where no user identifiable information is present. The datasets were prepared and published in the public domain by third parties.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margaris, D., Spiliotopoulos, D., Karagiorgos, G. et al. On Addressing the Low Rating Prediction Coverage in Sparse Datasets Using Virtual Ratings. SN COMPUT. SCI. 2, 255 (2021). https://doi.org/10.1007/s42979-021-00668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00668-8

Keywords

Navigation