Skip to main content

Advertisement

Log in

Detection of Drug–Drug and Drug–Disease Interactions Inducing Acute Kidney Injury Using Deep Rule Forests

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Drug–drug interactions (DDIs) and drug–disease interactions (DDXs) are critical issues for the healthcare system and clinical physicians. Typical statistical approaches, such as generalized linear models, cannot systematically handle the complexity of DDIs and DDXs. Although deep neural networks can predict DDIs and DDXs with high accuracy, they often require large numbers of training data, and how such black-box models arrive at predictions is still not well understood. Therefore, we propose a novel interpretable representation learning algorithm, Deep Rule Forest (DRF) to help discover rules from multi-layer tree-based models as the combinations of drug usages and disease indications to help identify DDIs and DDXs. In this paper, we introduce a real-world application of our approach to acute kidney injury (AKI), which is a typical unfavorable outcome that could be triggered by DDIs/DDXs. The sample data were obtained from a population of one million individuals randomly selected from the Taiwan National Health Insurance Database. The experimental result shows that the combinations of several diseases and drug prescriptions are associated with AKI. Also, the DRF combined with other machine learning algorithms perform comparatively higher than typical tree/rule-based and other state-of-the-art algorithms in terms of accuracy of prediction and model interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Becker ML, Kallewaard M, Caspers PW, Visser LE, Leufkens HG, Stricker BHC. Hospitalisations and emergency department visits due to drug–drug interactions: a literature review. Pharmacoepidemiol Drug Saf. 2007;16:641–51. https://doi.org/10.1002/pds.1351.

    Article  Google Scholar 

  2. Kusuhara H. How far should we go? Perspective of drug–drug interaction studies in drug development. Drug Metab Pharmacokinet. 2014;29:227–8. https://doi.org/10.2133/dmpk.DMPK-14-PF-903.

    Article  Google Scholar 

  3. Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8:111–28. https://doi.org/10.1038/nrd2683.

    Article  Google Scholar 

  4. Aronson JK. Classifying drug interactions. Br J Clin Pharmacol. 2004;58:343–4. https://doi.org/10.1111/j.1365-2125.2004.02244.x.

    Article  Google Scholar 

  5. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356:1255–9. https://doi.org/10.1016/S0140-6736(00)02799-9.

    Article  Google Scholar 

  6. Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug–drug interactions in adverse event reports. J Am Med Inform Assoc. 2012;19:79–85. https://doi.org/10.1136/amiajnl-2011-000214.

    Article  Google Scholar 

  7. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients—a meta-analysis of prospective studies. JAMA. 1998;279:1200–5. https://doi.org/10.1001/jama.279.15.1200.

    Article  Google Scholar 

  8. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;14:10. https://doi.org/10.1186/s12916-016-0553-2.

    Article  Google Scholar 

  9. Liu R, AbdulHameed MDM, Kumar K, Yu X, Wallqvist A, Reifman J. Data-driven prediction of adverse drug reactions induced by drug–drug interactions. BMC Pharmacol Toxicol. 2017;18:44. https://doi.org/10.1186/s40360-017-0153-6.

    Article  Google Scholar 

  10. Prueksaritanont T, Chu X, Gibson C, Cui D, Yee KL, Ballard J, Cabalu T, Hochman J. Drug—drug interaction studies: regulatory guidance and an industry perspective. AAPS J. 2013;15:629–45. https://doi.org/10.1208/s12248-013-9470-x.

    Article  Google Scholar 

  11. Hazell L, Shakir SAW. Under-reporting of adverse drug reactions. Drug Saf. 2006;29:385–96. https://doi.org/10.2165/00002018-200629050-00003.

    Article  Google Scholar 

  12. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:84–90. https://doi.org/10.1145/3065386.

    Article  Google Scholar 

  13. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016. p. 770–8. https://doi.org/10.1109/CVPR.2016.90.

  14. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst. 2013;26:3111–9.

    Google Scholar 

  15. Pennington J, Socher R, Manning C. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Association for Computational Linguistics; 2014. p. 1532–43. https://doi.org/10.3115/v1/D14-1162.

  16. Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. ArXiv181004805 Cs

  17. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–67. https://doi.org/10.1038/s41591-018-0177-5.

    Article  Google Scholar 

  18. Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug–drug and drug–food interactions. Proc Natl Acad Sci. 2018;115:E4304–11. https://doi.org/10.1073/pnas.1803294115.

    Article  Google Scholar 

  19. Marcus G (2018) Deep learning: a critical appraisal. ArXiv180100631 Cs Stat 27

  20. Quinlan JR. C4.5: programs for machine learning. San Francisco: Morgan Kaufmann; 1993.

    Google Scholar 

  21. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. CRC Press; 1984.

    MATH  Google Scholar 

  22. Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.

    Article  MATH  Google Scholar 

  23. Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40. https://doi.org/10.1007/BF00058655.

    Article  MATH  Google Scholar 

  24. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232. https://doi.org/10.1214/aos/1013203451.

    Article  MathSciNet  MATH  Google Scholar 

  25. Fürnkranz J, Gamberger D, Lavrac N. Foundations of rule learning. Springer; 2012. https://doi.org/10.1007/978-3-540-75197-7.

  26. Su G, Wei D, Varshney KR, Malioutov DM (2016) Interpretable two-level boolean rule learning for classification. ArXiv160605798 Cs Stat

  27. Bengio Y. Learning deep architectures for AI. Found Trends®. Mach Learn. 2009;2:1–127.

    MATH  Google Scholar 

  28. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35:1798–828.

    Article  Google Scholar 

  29. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18,820 patients. BMJ. 2004;329:15–9.

    Article  Google Scholar 

  30. Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC. Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med. 2016;176:473–82.

    Article  Google Scholar 

  31. Tannenbaum C, Sheehan NL. Understanding and preventing drug–drug and drug–gene interactions. Expert Rev Clin Pharmacol. 2014;7:533–44.

    Article  Google Scholar 

  32. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170–9. https://doi.org/10.1016/S0140-6736(13)60647-9.

    Article  Google Scholar 

  33. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66. https://doi.org/10.1016/S0140-6736(11)61454-2.

    Article  Google Scholar 

  34. Perazella MA. Drug–induced renal failure: update on new medications and unique mechanisms of nephrotoxicity. Am J Med Sci. 2003;325:349–62. https://doi.org/10.1097/00000441-200306000-00006.

    Article  Google Scholar 

  35. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005;45:804–17. https://doi.org/10.1053/j.ajkd.2005.02.010.

    Article  Google Scholar 

  36. Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, Paganini EP, Chertow GM, Program to Improve Care in Acute Renal Disease. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–21. https://doi.org/10.1111/j.1523-1755.2004.00927.x.

    Article  Google Scholar 

  37. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C, for the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients a multinational, multicenter study. JAMA. 2005;294:813–8. https://doi.org/10.1001/jama.294.7.813.

    Article  Google Scholar 

  38. Luyckx VA, Naicker S. Acute kidney injury associated with the use of traditional medicines. Nat Clin Pract Nephrol. 2008;4:664–71. https://doi.org/10.1038/ncpneph0970.

    Article  Google Scholar 

  39. Dormuth CR, Hemmelgarn BR, Paterson JM, James MT, Teare GF, Raymond CB, Lafrance J-P, Levy A, Garg AX, Ernst P, Canadian Network for Observational Drug Effect Studies (CNODES). Use of high potency statins and rates of admission for acute kidney injury: multicenter, retrospective observational analysis of administrative databases. BMJ. 2013;346:f880. https://doi.org/10.1136/bmj.f880.

    Article  Google Scholar 

  40. Shih C-J, et al. Association between use of dipeptidyl peptidase-4 inhibitors and the risk of acute kidney injury: a nested case-control study. Mayo Clin Proc. 2016;91:867–72.

    Article  Google Scholar 

  41. Girardeau Y, Trivin C, Durieux P, Le Beller C, Neuraz A, Degoulet P, Avillach P. Detection of drug–drug interactions inducing acute kidney injury by electronic health records mining. Drug Saf. 2015;38:799–809.

    Article  Google Scholar 

  42. Yue K, Zou B, Wang L, Li X, Zeng M, Wei F. Prediction of drug–drug interactions based on multi-layer feature selection and data balance. Chin J Electron. 2017;26:585–90.

    Article  Google Scholar 

  43. Calderón-Larrañaga A, Poblador-Plou B, González-Rubio F, Gimeno-Feliu LA, Abad-Díez JM, Prados-Torres A. Multimorbidity, polypharmacy, referrals, and adverse drug events: are we doing things well? Br J Gen Pract. 2012;62:e821–6. https://doi.org/10.3399/bjgp12X659295.

    Article  Google Scholar 

  44. Gandhi S, Fleet JL, Bailey DG, McArthur E, Wald R, Rehman F, Garg AX. Calcium-channel blocker-clarithromycin drug interactions and acute kidney injury. JAMA. 2013;310:2544–53. https://doi.org/10.1001/jama.2013.282426.

    Article  Google Scholar 

  45. Dumbreck S, Flynn A, Nairn M, Wilson M, Treweek S, Mercer SW, Alderson P, Thompson A, Payne K, Guthrie B. Drug-disease and drug–drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ. 2015;350:h949. https://doi.org/10.1136/bmj.h949.

    Article  Google Scholar 

  46. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comput Surv CSUR. 2018;51:1–42. https://doi.org/10.1145/3236009.

    Article  Google Scholar 

  47. Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery; 2016. p. 1135–44. https://doi.org/10.1145/2939672.2939778..

  48. Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE. 2015;10:e0130140. https://doi.org/10.1371/journal.pone.0130140.

    Article  Google Scholar 

  49. Papenmeier A, Englebienne G, Seifert C (2019) How model accuracy and explanation fidelity influence user trust. ArXiv190712652 Cs

  50. Cohen WW. Fast effective rule induction. In: Prieditis A, Russell S, editors. Machine learning proceedings 1995. San Francisco: Morgan Kaufmann; 1995. p. 115–23.

    Chapter  Google Scholar 

  51. Biran O, Cotton C (2017) Explanation and justification in machine learning: a survey. In: IJCAI-17 workshop explain AI XAI 8:8–13

  52. Dua D, Casey G (2019) {UCI} Machine Learning Repository. http://archive.ics.uci.edu/ml. Accessed 23 Nov 2017

  53. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.

    Book  Google Scholar 

  54. Bengio Y, Delalleau O, Simard C. Decision trees do not generalize to new variations. Comput Intell. 2010;26:449–67. https://doi.org/10.1111/j.1467-8640.2010.00366.x.

    Article  MathSciNet  MATH  Google Scholar 

  55. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  Google Scholar 

  56. Miller K, Hettinger C, Humpherys J, Jarvis T, Kartchner D (2017) Forward thinking: building deep random forests. ArXiv170507366 Cs Stat

  57. Zhou Z-H, Feng J (2017) Deep forest: towards an alternative to deep neural networks. ArXiv170208835 Cs Stat

  58. Quine WV. The problem of simplifying truth functions. Am Math Mon. 1952;59:521–31. https://doi.org/10.2307/2308219.

    Article  MathSciNet  MATH  Google Scholar 

  59. Quine WV. A way to simplify truth functions. Am Math Mon. 1955;62:627–31. https://doi.org/10.2307/2307285.

    Article  MathSciNet  MATH  Google Scholar 

  60. McCluskey EJ. Minimization of Boolean functions. Bell Syst Tech J. 1956;35:1417–44. https://doi.org/10.1002/j.1538-7305.1956.tb03835.x.

    Article  MathSciNet  Google Scholar 

  61. Ragin CC. The comparative method: moving beyond qualitative and quantitative strategies. University of California Press; 2014.

    Book  Google Scholar 

  62. Bengio Y, Delalleau O. On the expressive power of deep architectures. In: Kivinen J, Szepesvári C, Ukkonen E, Zeugmann T, editors. Algorithmic learning theory. Springer; 2011. p. 18–36.

    Chapter  Google Scholar 

  63. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery; 2016. p. 785–94. https://doi.org/10.1145/2939672.2939785.

  64. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. http://www.R-project.org/.

  65. Therneau T, Atkinson B, Ripley B (2019) rpart: Recursive partitioning and regression trees

  66. Kuhn M, Quinlan R. C50: C5.0 Decision Trees and Rule-Based Models. R package version 0.1.3.1. 2020. https://CRAN.R-project.org/package=C50.

  67. Hornik K, Buchta C, Zeileis A. Open-source machine learning: R Meets Weka. Comput Stat. 2009;24:225–32. https://doi.org/10.1007/s00180-008-0119-7.

    Article  MathSciNet  MATH  Google Scholar 

  68. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I, Zhou T, Li M, Xie J, Lin M, Geng Y, Li Y. xgboost: extreme gradient boosting. R package version 1.2.0.1. 2020. https://CRAN.R-project.org/package=xgboost.

  69. Wright MN, Ziegler A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17. https://doi.org/10.18637/jss.v077.i01.

    Article  Google Scholar 

  70. Allaire JJ, Chollet F. keras: R Interface to 'Keras'. R package version 2.3.0.0.9000. 2020. https://keras.rstudio.com.

  71. LeDell E, Gill N, Aiello S, Fu A, Candel A, Click C, Kraljevic T, Nykodym T, Aboyoun P, Kurka M, Malohlava M. h2o: R Interface for the 'H2O' Scalable Machine Learning Platform. R package version 3.32.0.1. 2020. https://CRAN.R-project.org/package=h2o.

  72. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67:301–20. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

    Article  MathSciNet  MATH  Google Scholar 

  73. Stiehl W. Truth Table Logic Optimizer. R Package Version 1.0.0. 2016. https://CRAN.R-project.org/package=LogicOpt.

  74. Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer; 2016.

    Book  Google Scholar 

  75. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol. 1996;58:267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

    Article  MathSciNet  MATH  Google Scholar 

  76. Efron B. Bootstrap methods: another look at the Jackknife. Ann Stat. 1979;7:1–26. https://doi.org/10.1214/aos/1176344552.

    Article  MathSciNet  MATH  Google Scholar 

  77. Ungprasert P, Cheungpasitporn W, Crowson CS, Matteson EL. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies. Eur J Intern Med. 2015;26:285–91.

    Article  Google Scholar 

  78. Crowe AV, Howse M, Bell GM, Henry JA. Substance abuse and the kidney. QJM Int J Med. 2000;93:147–52. https://doi.org/10.1093/qjmed/93.3.147.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Technology, Taiwan (MOST 107-2410-H-110-031) and National Sun Yat-Sen University and Kaohsiung Medical University, Taiwan (NSYSUKMU 105-I005 and NSYSUKMU 106-I005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihuang Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Artificial Intelligence for HealthCare” guest edited by Lydia Bouzar-Benlabiod, Stuart H. Rubin, and Edwige Pissaloux.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Huang, ST. & Wu, PH. Detection of Drug–Drug and Drug–Disease Interactions Inducing Acute Kidney Injury Using Deep Rule Forests. SN COMPUT. SCI. 2, 299 (2021). https://doi.org/10.1007/s42979-021-00670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00670-0

Keywords