Skip to main content

Advertisement

Log in

Tasks Scheduling Through Hybrid Genetic Algorithm in Real-Time System on Heterogeneous Environment

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The tasks scheduling issue on parallel processors in real-time system is part of the NP-hard issues. This manuscript developed a model for solving the tasks scheduling issue in heterogeneous multiprocessor environment. In this model, we developed two hybrid genetic algorithms; first algorithm named as HHCGA is the union of hierarchical clustering and genetic algorithm, used for making the tasks clusters of to decrease inter-tasks communication cost; second algorithm named as HHAGA is the union of heuristic approach and genetic algorithm, used for scheduling the tasks clusters onto processors to decrease system cost. The developed model has multiple objectives such as minimize the response time, system cost and maximize system reliability simultaneously. The efficacy of the developed model has been shown via simulation studies. The results of the developed model are likened than that of some other models in simulation studies. This model is appropriate for both types fuzzy cost or crisp cost and it also worked very well for random number of processors and tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdelzaher TF, Shin KG. Period-based load partitioning and assignment for large real-time applications. IEEE Trans Comput. 2000;49:81–7. https://doi.org/10.1109/12.822566.

    Article  Google Scholar 

  2. Akbari M, Rashidi H. A multi-objectives scheduling algorithm based on cuckoo optimization for task allocation problem at compile time in heterogeneous systems. Expert Syst Appl. 2016;60:234–48. https://doi.org/10.1016/j.eswa.2016.05.014.

    Article  Google Scholar 

  3. Andersson B, Baruah S, Jonsson J. Static-priority scheduling on multiprocessors. Proceedings 22nd IEEE Real-Time Systems Symposium. 2001;93–202. https://doi.org/10.1109/real.2001.990610.

  4. Attiya G, Hamam Y. Task allocation for maximizing reliability of distributed systems: A simulated annealing approach. J Parallel Distrib Comput. 2006;66:1259–66. https://doi.org/10.1016/j.jpdc.2006.06.006 .

    Article  MATH  Google Scholar 

  5. Cai W, Wang Y, Lv R, Jin Q. An efficient location recommendation scheme based on clustering and data fusion. Comput Electr Eng. 2019;77:289–99. https://doi.org/10.1016/j.compeleceng.2019.06.006.

    Article  Google Scholar 

  6. Dazhang Gu, Drews F, Welch L. Robust task allocation for dynamic distributed real-time systems subject to multiple environmental parameters. In: 25th IEEE International Conference on Distributed Computing Systems. IEEE, 2001;1:675–684. https://doi.org/10.1109/ICDCS.2005.71.

  7. Peng DT, Shin KG. Assignment and scheduling communicating periodic tasks in distributed real-time systems. IEEE Trans Softw Eng. 1997;23:745–58. https://doi.org/10.1109/32.637388.

    Article  Google Scholar 

  8. Daoud MI, Kharma N. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems. J Parallel Distrib Comput. 2008;68:399–409. https://doi.org/10.1016/j.jpdc.2007.05.015.

    Article  MATH  Google Scholar 

  9. Elsadek AA, Wells BE. Heuristic model for task allocation in a heterogeneous distributed computing system. Proc 9Th Int Conf Comput Appl Ind Eng. 1996;6:9–12.

    Google Scholar 

  10. Gen M, Yoo M. Real time tasks scheduling using hybrid genetic algorithm. Stud Comput Intell. 2008;96:319–50. https://doi.org/10.1007/978-3-540-76827-2_13.

    Article  Google Scholar 

  11. Kumar H, Chauhan NK, Yadav PK. A high performance model for task allocation in distributed computing system using k-means clustering technique. Int J Distrib Syst Technol. 2018;9:1–23. https://doi.org/10.4018/IJDST.2018070101.

    Article  Google Scholar 

  12. Kumar H, Chauhan NK, Yadav PK. Hybrid genetic algorithm for task scheduling in distributed real-time system. Int J Syst Control Commun. 2019;10:32–51. https://doi.org/10.1504/IJSCC.2019.097417.

    Article  Google Scholar 

  13. Kopidakis Y, Lamari M, Zissimopoulos V. On the task assignment problem: two new efficient heuristic algorithms J. Parallel Distrib Comput. 1997;42:21–9. https://doi.org/10.1006/jpdc.1997.1311.

    Article  Google Scholar 

  14. Lee CH, Lee D, Kim M. Optimal task assignment in linear array networks. IEEE Trans Comput. 1992;41:877–80. https://doi.org/10.1109/12.256461.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li W, Delicato FC, Pires PF, et al. Efficient allocation of resources in multiple heterogeneous wireless sensor networks. J Parallel Distrib Comput. 2014;74:1775–88. https://doi.org/10.1016/j.jpdc.2013.09.012.

    Article  Google Scholar 

  16. Lo VM. Heuristic algorithms for task assignment in distributed systems. IEEE Trans Comput. 1988;37:1384–97. https://doi.org/10.1109/12.8704.

    Article  MathSciNet  Google Scholar 

  17. Ma YC, Chen TF, Chung CP. Branch-and-bound task allocation with task clustering-based pruning. J Parallel Distrib Comput. 2004;64:1223–40. https://doi.org/10.1016/j.jpdc.2004.08.002.

    Article  MATH  Google Scholar 

  18. Naderan M, Dehghan M, Pedram H. Upper and lower bounds for dynamic cluster assignment for multi-target tracking in heterogeneous WSNs. J Parallel Distrib Comput. 2013;73:1389–99. https://doi.org/10.1016/j.jpdc.2013.04.007.

    Article  Google Scholar 

  19. Neamatollahi P, Abrishami S, Naghibzadeh M, et al. Hierarchical clustering-task scheduling policy in cluster-based wireless sensor networks. IEEE Trans Ind Inform. 2018;14:1876–86. https://doi.org/10.1109/TII.2017.2757606.

    Article  Google Scholar 

  20. Niknam T, Amiri B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl Soft Comput J. 2010;10:183–97. https://doi.org/10.1016/j.asoc.2009.07.001.

    Article  Google Scholar 

  21. Oh J, Wu C. Genetic-algorithm-based real-time task scheduling with multiple goals. J Syst Softw. 2004;71:245–58. https://doi.org/10.1016/S0164-1212(02)00147-4.

    Article  Google Scholar 

  22. Omara FA, Arafa MM. Genetic algorithms for task scheduling problem. Stud Comput Intell. 2009;203:479–507. https://doi.org/10.1007/978-3-642-01085-9_16.

    Article  MATH  Google Scholar 

  23. Yadav PK, Pradhan P, Singh PP. A fuzzy clustering method to minimize the inter task communication effect for optimal utilization of processor’s capacity in distributed real time systems. In: Advances in intelligent and soft computing. India: Springer; 2012. p. 159–68.

    Google Scholar 

  24. Kumar PR, Palani S (2012) A dynamic voltage scaling with single power supply and varying speed factor for multiprocessor system using genetic algorithm. In: International Conference on Pattern Recognition, Informatics and Medical Engineering, PRIME 2012. pp 342–346

  25. Rahman MM, Chowdhury MFI (2009) Examining branch and bound strategy on multiprocessor task scheduling. In: ICCIT 2009—Proceedings of 2009 12th International Conference on Computer and Information Technology. pp 162–167

  26. Roy P. Heuristic based task scheduling in multiprocessor systems with genetic algorithm by choosing the eligible processor. Int J Distrib Parallel Syst. 2012;3:111–21. https://doi.org/10.5121/ijdps.2012.3412.

    Article  Google Scholar 

  27. Samal AK, Mall R, Tripathy C. Fault tolerant scheduling of hard real-time tasks on multiprocessor system using a hybrid genetic algorithm. Swarm Evol Comput. 2014;14:92–105. https://doi.org/10.1016/j.swevo.2013.10.002.

    Article  Google Scholar 

  28. Shatz SM, Wang JP, Goto M. Task allocation for maximizing reliability of distributed computer systems. IEEE Trans Comput. 1992;41:1156–68. https://doi.org/10.1109/12.165396.

    Article  Google Scholar 

  29. Singh S, Garg ML. Task allocation in heterogeneous distributed real time system for optimal utilization of processor’s capacity. IOSR J Comput Eng. 2014;16:10–8. https://doi.org/10.9790/0661-16521018.

    Article  Google Scholar 

  30. Topcuoglu H, Hariri S, Wu MY. Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans Parallel Distrib Syst. 2002;13:260–74. https://doi.org/10.1109/71.993206.

    Article  Google Scholar 

  31. Tripathy B, Dash S, Padhy SK. Dynamic task scheduling using a directed neural network. J Parallel Distrib Comput. 2015;75:101–6. https://doi.org/10.1016/j.jpdc.2014.09.015.

    Article  Google Scholar 

  32. Tyagi I, Kumar H. Implementation and comparative analysis of k-means and fuzzy c-means clustering algorithms for tasks allocation in distributed real time system. Int J Embed Real-Time Commun Syst. 2019;10:66–86. https://doi.org/10.4018/IJERTCS.2019040105.

    Article  Google Scholar 

  33. Ucar B, Aykanat C, Kaya K, Ikinci M. Task assignment in heterogeneous computing systems. J Parallel Distrib Comput. 2006;66:32–46. https://doi.org/10.1016/j.jpdc.2005.06.014.

    Article  MATH  Google Scholar 

  34. Vasile MA, Pop F, Tutueanu RI, et al. Resource-aware hybrid scheduling algorithm in heterogeneous distributed computing. Futur Gener Comput Syst. 2015;51:61–71. https://doi.org/10.1016/j.future.2014.11.019.

    Article  Google Scholar 

  35. Voutsinas TG, Pappis CP. A branch and bound algorithm for single machine scheduling with deteriorating values of jobs. Math Comput Model. 2010;52:55–61. https://doi.org/10.1016/j.mcm.2009.12.024.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang L, Khan SU, Chen D, et al. Energy-aware parallel task scheduling in a cluster. Futur Gener Comput Syst. 2013;29:1661–70. https://doi.org/10.1016/j.future.2013.02.010.

    Article  Google Scholar 

  37. Wu Z, Liu X, Ni Z, et al. A market-oriented hierarchical scheduling strategy in cloud workflow systems. J Supercomput. 2013;63:256–93. https://doi.org/10.1007/s11227-011-0578-4.

    Article  Google Scholar 

  38. Xiao Y, Ren Z, Zhang H, et al (2018) A novel task allocation for maximizing reliability considering fault-tolerant in VANET real time systems. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC. Institute of Electrical and Electronics Engineers Inc., pp 1–7

  39. Govil K, Kumar A. A modified and efficient algorithm for static task assignment in distributed processing environment. Int J Comput Appl. 2011;23:1–5. https://doi.org/10.5120/2910-3824.

    Article  Google Scholar 

  40. Gupta R, Yadav PK. Task allocation model for balance utilization of available resource in multiprocessor environment. IOSR J Comput Eng. 2015;17:94–99. https://doi.org/10.9790/0661-17419499.

    Article  Google Scholar 

  41. Kafil M, Ahmad I. Optimal task assignment in heterogeneous computing systems. Proceedings Sixth Heterogeneous Computing Workshop. 1997;135–146. https://doi.org/10.1109/hcw.1997.581416.

  42. Kartik S, Ram Murthy CS. Task allocation algorithms for maximizing reliability of distributed computing systems. IEEE Trans Comput. 1997;46:719–724. https://doi.org/10.1109/12.600888.

    Article  Google Scholar 

  43. Sarje AK, Sagar G. Heuristic model for task allocation in distributed computer systems. IEEE Proceeding Comput Digit Tech. 1991;138:313. https://doi.org/10.1049/ip-e.1991.0043.

    Article  MATH  Google Scholar 

  44. Sharma U, Sharma S. Task allocation technique in distributed computing system for utilization of processors by reducing inter task communication cost. Int J Innov Res Comput Commun Eng. 2007. https://doi.org/10.15680/IJIRCCE.2016 (An ISO 3297).

    Article  Google Scholar 

  45. Prakash Vidyarthi D, Kumer Sarker B, Tripathi AK, Yang LT. Allocation of multiple tasks in DCS. Sched Distrib Comput Syst. 2009. https://doi.org/10.1007/978-0-387-74483-4_8.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harendra Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N.K., Tyagi, I., Kumar, H. et al. Tasks Scheduling Through Hybrid Genetic Algorithm in Real-Time System on Heterogeneous Environment. SN COMPUT. SCI. 3, 75 (2022). https://doi.org/10.1007/s42979-021-00959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00959-0

Keywords

Navigation