Skip to main content
Log in

A Survey on Error–Correcting Codes for Digital Video Broadcasting

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

We expose a complete survey of error-correcting codes (ECC) for digital video broadcasting (DVB) to support information protection. This survey discusses the specific application of the adaptive ECC feature for terrestrial/satellite/handheld and cable of the first, second, and third generations. We provide and review an ECC technique overview on DVB standard with their technical transmission specifications. The critical contribution of this paper is to clarify the differences among different ECC technologies using in the three generations of DVB. The survey also provides future directions for the technology trend of ECC for DVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ETSI EN 300 744 V1.6.1 (2009-01).

  2. DVB, History of the DVB Project-DVB Standards and Specifications, Ver. 11.0, 2008.

  3. El Hajjar, HL. A Survey of Digital Television Broad-cast Transmission Techniques. IEEE Commun Surv Tutor 4 quarter; 2013: 1924–1949

  4. Simon MK, Alouini MS. Digital communication over fading channels: a unified approach to performance analysis. New York: Wiley-Interscience; 2000.

    Google Scholar 

  5. Gallager RG. Sequential decoding for binary channels with noise and synchronization errors. Lincoln Lab Group, MIT, MA, USA, Tech.Rep. Lincoln Lab Group Report 2502; 1961.

  6. Levenshtein VT. Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Doklady. 1966;10(8):707–10.

    MathSciNet  Google Scholar 

  7. Calabi L, Hartnett WE. Some general results of coding theory with applications to the study of codes for the correction of synchronization errors. Inform Control. 1969;15:235–49.

    MathSciNet  MATH  Google Scholar 

  8. Ar-Reyouchi EM, Lamrani Y, Benchaib I, Rattal S, Ghoumid K. NCBP: Network coding based protocol for recovering lost packets in the internet of things. In: Advanced communication systems and information security. ACOSIS 2019. Communications in Computer and Information Science, vol 1264. Springer, Cham. 2020.

  9. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948; 379-423 and 623-656.

  10. Wang C, Sklar D, Johnson D. Forward error correction coding. Crosslink-The Aerospace Corporation magazine 3(1) (winter 2001/2002).

  11. Hamming RW. Error correction and error detection coding. Bell Syst Technical J. 1950;XXIX(2).

  12. Ar-Reyouchi EM. An efficient filtering technique of gap filler system for multi-standards digital terrestrial TV in an SFN 1325 an efficient filtering technique of gap filler system for multi-standards digital terrestrial TV in an SFN. J Internet Technol. 2020;21:1325–34.

    Google Scholar 

  13. Ar-Reyouchi EM, Lamrani Y, Ghoumid K, Rattal S. Very high-performance echo canceller for digital terrestrial television in single frequency network. Int J Adv Comput Sci Appl (IJACSA). 2020;11(2).

  14. Alencar D Marcelo S. Digital television systems. Cambridge University Press; 2010 Online ISBN: 9780511609732

  15. Alencar M. Digital television systems. Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  16. Li M. Design, imlementation, and prototyping of an iterative receiver for bit-interleaved coded modulation system dedicated to DVB-T2.Ph.D. Dissertation, Department of Electronics, Telecom Bretagne, Brest, France; 2012.

  17. Kadel R, Islam N, Ahmed K, Halder S. Opportunities and challenges for error correction scheme for wireless body area network—a survey. J Sens Actu Netw. 2018; 8(1).

  18. El-Abbasy K, Taki Eldin R, El Ramly S, Abdelhamid B. Optimized polar codes as forward error correction coding for digital video broadcasting systems. Electronics. 2021;10(17):2152. https://doi.org/10.3390/electronics10172152.

    Article  Google Scholar 

  19. Mercier H, Bhargava VK, Tarokh V. A survey of error correcting codes for channels with symbol synchronization errors. IEEE Commun Surv Tutor. 2010;12(1):87–96.

    Google Scholar 

  20. Briffa JA, Wesemeyer S. SimCommSys: taking the errors out of error-correcting code simulations. lET J Eng. 2014.

  21. Drury G, Markarian G, Pickavance K. Coding and modulation for digital television. Berlin: Springer; 2001.

    Google Scholar 

  22. Francis M, Green R. Forward error correction in digital television broadcast systems. WP270, Xilinx, 1.0; 2007; 1–25

  23. Blahut RE. Algebraic codes for data transmission. Cambridge: Cambridge University Press; 2003.

    MATH  Google Scholar 

  24. https://www.etsi.org/deliver/etsi_tr/102900_102999/102993/01.01.01_60/tr_102993v010101p.pdf

  25. Ungerboeck G. Channel coding with multilevel/phase signals. IEEE Trans Inform Theory. 1982;28(1):55–67.

    MathSciNet  MATH  Google Scholar 

  26. Ungerboeck G. Trellis-coded modulation with redundant signal sets Part I: introduction. IEEE Commun Mag. 1987;25(2):5–11.

    Google Scholar 

  27. Ungerboeck G. Trellis-coded modulation with redundant signal sets Part II: state of the art. IEEE Commun Mag. 1987;25(2):12–21.

    Google Scholar 

  28. Berlekamp ER. The technology of error-correction codes. Proc IEEE. 1980;68(5):564–93.

    Google Scholar 

  29. Berrou C, Glavieux A, Thitimajshima P. Near shannon limit error-correcting coding and decoding:turbocodes. In: ICC ’93, Conference Record, Geneva; 1993:1064–1070

  30. Gallager RG. Low-density parity-check codes. Cambridge: MIT Press; 1963.

    MATH  Google Scholar 

  31. Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error correcting coding and decoding: turbo-codes. In: Proceedings of the IEEE International Conference on Communications. Geneva, Switzerland; May 23–26, 1993; 1064–1070.

  32. Lamrani Y, Benchaib I, Rattal S, Ar-Reyouchi EM, Ghoumid K. Performance analysis on modulation techniques for medical devices sensitivity in wireless NB-IoT network. SSRN Electron J. 2021. https://doi.org/10.2139/ssrn.3852562.

  33. Ar-Reyouchi EM, Kamal K, Amezian K, El Mrabet O. MIMO-OFDM coded for digital terrestrial television broadcasting systems. Int J Elect Comput Energ Electron Commun Eng. 2013;7:334–8.

    Google Scholar 

  34. Ar-Reyouchi EM, Ghoumid K, Amezian K, El Mrabet O. The Powerful alamouti code in MIMO-OFDM improvement for the next generation of terrestrial television broadcasting systems. Int J Eng Technol Sci. 2014;14:33–42.

    Google Scholar 

  35. Ar-Reyouchi EM. Optimisation des performances des réseaux de communications sans fil: performances des réseaux de communications sans fil pour la télégestion des stations de la Télédiffusion TV/FM, Presses Académiques Francophones (Paf); 2017.

  36. Recommendation ITU-R BT.1306-7 Error-correction, data framing, modulation and emission methods for digital terrestrial television broadcasting, 06/2015.

  37. Recommendation ITU-R BT.1877-2, Error-correction, data framing,modulation and emission methods for second generation of digital terrestrial television broadcasting systems BT.1877-2, 12/2019.

  38. Ar-Reyouchi EM, Maslouhi I, Ghoumid K. A new fast Polling algorithm in wireless mesh network for narrowband internet of things. Int J Telecommun Syst. 2020;74(3):405–10. https://doi.org/10.1007/s11235-020-00671-z.

    Article  Google Scholar 

  39. Ar-Reyouchi EM, Ghoumid K, Ar-Reyouchi D, Rattal S, Yahiaoui R, Elmazria O. An accelerated end-to-end probing protocol for narrowband IoT medical devices. IEEE Access. 2021;9:34131–41. https://doi.org/10.1109/ACCESS.2021.3061257.

    Article  Google Scholar 

  40. Shannon CE. Communication in the presence of noise. Proc. IRE 37, 10-21. 1949.

  41. Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29(2):147–60.

    MathSciNet  MATH  Google Scholar 

  42. Mitani N. On the transmission of numbers in a sequential) computer. In: National Convention of the Institute of Electrical Communication Engineers of Japan. 1951.

  43. Prange E. Cyclic error–correcting codes in two symbols. In: AFCRCTN57-103, Air Force Cambridge Research Center, Bedford, Mass. 1957

  44. Bose RC, Ray-Chaudhuri DK. On a class of error correcting binary group codes. Inform Control. 1960;3:68–79.

    MathSciNet  MATH  Google Scholar 

  45. Hocquenghem A. Codes correcteurs d’erreurs. Chiffres. 1959;2:147–56.

    MathSciNet  MATH  Google Scholar 

  46. Reed IS, Solomon G. Polynomial codes over certain finite fields. SIAM J Appl Math. 1960;8:300–4.

    MathSciNet  MATH  Google Scholar 

  47. Elias P. Coding for noisy channels. IRE Conv. Rec. Part 4. 1955; 37–47

  48. Cain JB, Clark GC Jr, Geist JM. Punctured convolutional codes of rate \((n1)=n\) and simplified maximum likelihood decoding. IEEE Trans Inform Theory. 1979;IT–25:97–100.

  49. Berro C, glavieux A, Thitimajshima P. Near shannon limit error correcting coding and decoding: turbo codes. In: Proceedings of IEEE International Conference on Communication (ICC ’93); May 1993. Geneva.

  50. Parida D, Nayak M, Dash D. An efficient forward error correction based OFDM technique for digital video broadcasting. In: IEEE International Conference on Communication and Signal Processing (ICCSP), 6–8 April 2017.

  51. Tonnellier T, Leroux C, Le Gal B, Gadat B, Jego C, Wambeke NV. ‘Lowering the Error Floor of Turbo Codes With CRC Verification’. IEEE Wirel Commun Lett 2016;5(4).

  52. Forney JGD. Concatenated codes. Cambridge: MIT Press; 1966.

    Google Scholar 

  53. Ricker D. Echo signal processing. 2003;725 Springer Netherlands

  54. Lin S, Costello D. Error control coding fundamentals and applications. Englewood Cliffs: Prentice-Hall; 1983.

    MATH  Google Scholar 

  55. Drury G, Markarian G, Pickavance K. Coding and modulation for digital television. Boston: Kluwer Academic Publishers; 2001.

    Google Scholar 

  56. Ar-reyouchi EM, meziane K, El Mrabet O, Ghoumid K. The potentials of Network Coding for improvement of Round Trip Time in wireless Narrowband RF communications, Multimedia Computing and Systems (ICMCS), International Conference on; 2014:765–770.

  57. Reyouchi EM AR, Chatei Y, Ghoumid K, Lichioui A. The powerful combined effect of forward error correction and automatic repeat request to improve the reliability in the wireless communications. In: International conference on computational. 2015.

  58. Mehrotra S, Li J, Huang Y-Z. Optimizing FEC transmission strategy for minimizing delay in lossless sequential streaming. IEEE Trans Multim; 2011.

  59. Chatei Y, Hammouti M, Ar-reyouchi EM, Ghoumid K. Downlink and Uplink Message Size Impact on Round Trip Time Metric in Multi-Hop Wireless Mesh Networks. Int J Adv Comput Sci Appl (IJACSA). 2017; 8(3). https://doi.org/10.14569/IJACSA.2017.

  60. Zinchenko MY, Levadniy AM, Grebenko YA. ”Concatenated Error Correction Code Implementation on FPGA”. SYNCHROINFO 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications, IEEE Conference; 2019.

  61. ETSI EN 302 755 V1.3.1 (2011-11): Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2) (2011-11).

  62. Hamada M. Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans Inform Theory. 2008;54(12):5689–704.

    MathSciNet  MATH  Google Scholar 

  63. Wesley Peterson W, Peterson W, Weldon EJ, E J. “Error-correcting Codes” SN - 9780262160391, 1972.

  64. ETSI EN 300 421: “Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for 11/12 GHz satellite services”.

  65. ETSI EN 300 429: “Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for cable systems”.

  66. Ramsey JL. Realization of optimum interleavers. IEEE Trans Info Theory. 1970;IT–16(3):338–45.

    MATH  Google Scholar 

  67. Forney GD. Burst-correcting codes for the classic bursty channel. IEEE Trans Commun Technol. 1971;COM-19: 772–781

  68. van Nee R, Prasad R. OFDM for wireless multimedia communications. Artech House Publishers, Boston, London (2000) ISBN 0-89006-530-6

  69. Rohling H, May T, Bruninghaus K, Grunheid R. Broad-band OFDM radio transmission for multimedia applications. Proc IEEE. 1999;87:1778–89.

    Google Scholar 

  70. Welch LR, Berlekamp ER. Error correction for algebraic block codes, US Patent 4 633 470, 1986.

  71. Barbier M, Chabot C, Quintin G. On Quasi-Cyclic Codes as a Generalization of Cyclic Codes (2011). arXiv: 1108.3754

  72. Viterbi AJ, Odenwalder JP. Further results on optimal decoding of convolutional codes. IEEE Trans Inform Theory (Corresp). 1969;IT15:732–4.

    MathSciNet  MATH  Google Scholar 

  73. Rao KD. Channel coding techniques for wireless communications. Berlin: Springer; 2015.

    MATH  Google Scholar 

  74. Poongodi C, Ramya P, Shanmugam A. BER Analysis of MIMO OFDM System Using M-QAM over Rayleigh fading channel. In: Communication and Compitational Intelligence (INCOCCI), International Conference on 2010; 2010. 284–288

  75. Hocquenghem A. Codes correcteurs d’erreurs. Chiffres. 1959;2:147–56.

    MathSciNet  MATH  Google Scholar 

  76. Bose RC, Ray-Chaudhuri DK. On a class of error correcting binary group codes. Inform Control. 1960;3:68–79.

    MathSciNet  MATH  Google Scholar 

  77. Berlekamp ER. Algebraic coding theory. New York: McGraw-Hill; 1968.

    MATH  Google Scholar 

  78. ETSI EN 302 307-1: “Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 1: DVB-S2”.

  79. ETSI EN 302 755 v1.3.1 Frame structure channel coding and modulation for a second-generation digital terrestrial television broadcasting system (DVB-T2), 2012.

  80. Gallager R. Low-density parity-check codes. Inform Theory IRE Trans On. 1962;8(1):21–8.

    MathSciNet  MATH  Google Scholar 

  81. MacKay DJC, Neal RM. Near shannon limit performance of low density parity check codes. Electron Lett. 1997;33(6):457–8.

    Google Scholar 

  82. Wiberg N, Loileger H-A, Koetter R. Codes and iterative decoding on general graphs. Euro Trans Telecommun. 1995;6:513–26.

    Google Scholar 

  83. Jang M, et al. Design of LDPC coded BICM in DVB broadcasting systems with block permutations. IEEE Trans Broadcast. 2015;61(2):327–33.

    Google Scholar 

  84. Richardson T, Kudekar S. Design of low-density parity check codes for 5G new radio. IEEE Commun Mag. 2018;56(3):28–34.

    Google Scholar 

  85. Tanner R. A recursive approach to low complexity codes. Inform Theory IEEE Transa On. 1981;27(5):533–47.

    MathSciNet  MATH  Google Scholar 

  86. Wesley Peterson W. Error-correcting codes. Cambridge: MIT Technology Press; 1961.

    MATH  Google Scholar 

  87. Iliev Teodor B, Hristov Georgi V, Zahariev Plamen Z, Iliev Mihail P. “Application and evaluation of the LDPC codes for the next generation communication systems”, Novel Algorithms and Techniques In: Telecommunications, Automation and Industrial Electronics. 2008; p. 532–536. Springer.

  88. Porcello JC. “Designing and implementing low density parity check (ldpc) decoders using fpgas”, Aerospace Conference 2014; March 2014. p. 1–7. IEEE.

  89. Ghauri S, Haq M, Iqbal M, Rehman J. “Performance analysis of ldpc codes on different channels,” in Next Generation Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth International Conference on; Sept 2014. p. 235–240.

  90. Papaharalabos S, et al. DVB-S2 LDPC decoding using robust checknode update approximations. IEEE Trans Broadcast. 2008;54(1):120–6.

    Google Scholar 

  91. Eroz M, Sun FW, Lee LN. DVB-S2 low density parity check codes with near Shannon limit performance. Int J Satellite Commun Netw. 2004;22:269–79.

    Google Scholar 

  92. Digital Video Broadcasting (DVB); Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2), Eur Telecommun Stand Inst EN Standard 302 755. 2012

  93. Kang I-W, Kim H-N, Hanzo LH. EXIT-chart aided design of row-permutation assisted twin-interleaver BICM-ID. IEEE Trans Broadcast. 2018;64(1):85–95.

    Google Scholar 

  94. Kim K-J, et al. Low-density parity-check codes for ATSC 3.0. IEEE Trans Broadcast. 2016;62(1):159–71.

    Google Scholar 

  95. Di C, Proietti D, Telatar I, Richardson T, Urbanke R. Finitelength analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans Inform Theory. 2002;48(6):1570–9.

    MathSciNet  MATH  Google Scholar 

  96. Hammouti M, Ar-reyouchi EM, Ghoumid K, Lichioui A. Clustering analysis of wireless sensor network based on network coding with low-density parity check. Int J Adv Comput Sci Appl (IJACSA). 2016;7(3).

  97. Tang H, Xu J, Kou Y, Lin S, Abdel-Ghaffar K. On algebraic construction of Gallager and circulant low-density parity check codes. IEEE Trans Inf Theory. 2004;50(6):1269–79.

    MathSciNet  MATH  Google Scholar 

  98. Ten Brink S, Kramer G, Ashikhmin A. Design of low density parity-check codes for modulation and detection. IEEE Trans Commun. 2004;52(4):670–8.

    Google Scholar 

  99. Quintin G, Barbier M, Chabot C. On generalized Reed–Solomon codes over commutative and noncommutative rings. IEEE Trans Inform Theory. 2013;59:5882–97.

    MathSciNet  MATH  Google Scholar 

  100. Berlekarnp ER. Algebraic coding-theory. New York: McOraw-llill; 1968.

    Google Scholar 

  101. Guruswami V. Iterative decoding of low-density parity check codes. Bull EATCS. 2006;90:53–88.

    MathSciNet  MATH  Google Scholar 

  102. Fossorier MPC, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low density parity check codes based on belief propagation. IEEE Trans Commun. 1999;47(5):673–80.

    Google Scholar 

  103. Arnone Leonardo J. Transmisión segura en comunicaciones inalámbricas de corto alcance, 2008.

  104. Blahut RE. Theory and practice of error control codes. Boston: Addison Wesley; 1983.

    MATH  Google Scholar 

  105. Blanco R, Inza I, Larrañaga P. Learning Bayesian networks in the space of structures by estimation of distribution algorithms. Int J Intell Syst. 2003;18:205–20.

    MATH  Google Scholar 

  106. Zhang Y, Peng K, Song J, Wu Y. Quasi-cyclic spatially coupled LDPC code for broadcasting. IEEE Trans Broadcast. 2020;66(1):187–94. https://doi.org/10.1109/TBC.2019.2932336.

    Article  Google Scholar 

  107. Poulenard S, Gadat Benjamin, Chouteau J, Anfray T, Poulliat Charly, Jego Christophe, Hartmann O, Artaud Geraldine, Meric H. Forward error correcting code for high data rate LEO satellite optical downlinks. In: Conference: International Conference on Space Optics - ICSO 2018. 200; 2019. https://doi.org/10.1117/12.2536120

  108. Kim KJ, et al. Low-density parity-check codes for ATSC 3.0. IEEE Trans Broadcast. 2016;62(1):189–96.

    Google Scholar 

  109. Hwang Y, Cho S, Myung S, Yang K. Efficient decoding schemes of LDPC codes for the layered division multiplexing systems in ATSC 3.0. IEEE Trans Broadcast. 2017;63(1):1–10.

    Google Scholar 

  110. Cheng YK, Chang RY, Chen LJ. “A Comparative Study of Machine-Learning Indoor Localization Using FM and DVB-T Signals in Real Testbed Environments”, IEEE 85th Vehicular Technology Conference (VTC Spring). 2017.

  111. Wang M, Cui Y, Wang X, Xiao S, Jiang J. Machine learning for networking: Workflow advances and opportunities. IEEE Netw. 2018;32(2):92–9.

    Google Scholar 

  112. Maslouhi I, Ar-reyouchi EM, Ghoumid K, Baibai K. Analysis of end-to-end packet delay for internet of things in wireless communications. Int J Adva Comput Sci Appl (IJACSA). 2018;9(9):338–43.

    Google Scholar 

  113. Ar-Reyouchi EM, Ghoumid K. Technical accuracy based on efficiency algorithm for measuring standing wave ratio in wireless sensor network. Int J Commun Antenna Propag (IRECAP). 2019;9(2):137–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Ghoumid.

Ethics declarations

Conflict of interest

All authors declare that they have no conflits on interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ar-Reyouchi, E.M., Rattal, S. & Ghoumid, K. A Survey on Error–Correcting Codes for Digital Video Broadcasting. SN COMPUT. SCI. 3, 105 (2022). https://doi.org/10.1007/s42979-021-00994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00994-x

Keywords

Navigation