Abstract
Object tracking is a very interesting problem in computer vision. Numerous algorithms have been developed to solve object tracking problems for several decades. Among various techniques, in this article, we review most of the existing traditional supervised machine learning-based moving object tracking approaches before the year 2017. We also discuss the several evaluation measures and various datasets considered in the literature. We hope that this survey helps the readers to acquire valuable knowledge about the literature of traditional supervised learning-based tracking algorithms and to choose the most suitable algorithm for their particular tracking tasks.







Similar content being viewed by others
Notes
Object, target and object of interest are used inter changeably in this article.
Or test frame or current frame or \(t\text {th}\) frame.
Or training frame or previous frame or \((t-1){\text {th}}\) frame.
References
The birchfield dataset. 1998. http://www.ces.clemson.edu/~stb/research/headtracker/seq/.
Tracking of abrupt motion project website: 1998. http://cv.snu.ac.kr/research/~wlmctracker/index.html.
CAVIAR: Context aware vision using image-based active recognition. 2002. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
CAVIAR test case scenarios. 2002. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
FRAGtrack dataset: 2006. http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm.
Haibin ling code and data website: 2006. http://www.dabi.temple.edu/~hbling/code_data.htm#L1_Tracker.
International workshop on performance evaluation of tracking and surveillance website: 2006. http://www.cvg.rdg.ac.uk/PETS2006/index.html.
Incremental learning for robust visual tracking project website: 2007. http://www.cs.utoronto.ca/~dross/ivt/.
Adaptive regression tracking project website: 2008. https://www.cvl.isy.liu.se/research/adaptive-regression-tracking/adaptive-regression-tracking/.
Visual tracking with integral histograms and articulating blocks project website: 2008. http://www.cise.ufl.edu/~smshahed/tracking.html.
Cehovin dataset. 2009. http://www.vicos.si/User:Lukacu/Research/Tracking.
MILtrack dataset: 2009. http://vision.ucsd.edu/~bbabenko/miltrack.shtml.
Tracking of a non-rigid object project website: 2009. http://cv.snu.ac.kr/research/~bhmctracker/index.html.
PROST dataset: 2010. http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php.
Tracking by sampling trackers project website: 2010. http://cv.snu.ac.kr/research/~vts/.
Visual tracking decomposition: 2010. http://cv.snu.ac.kr/research/~vtd/.
Godec dataset: 2011. http://lrs.icg.tugraz.at/research/houghtrack/index.php.
Superpixel tracking project website: 2011. http://ice.dlut.edu.cn/lu/Project/iccv_spt_webpage/iccv_spt.htm.
Visual tracking datasets of york university. 2011. http://www.cse.yorku.ca/vision/research/visual-tracking/.
Zdenek kallal’s website: 2011. http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/.
Locally orderless tracking project website: 2012. http://www.eng.tau.ac.il/~oron/LOT/LOT.html.
Robust object tracking via sparsity-based collaborative model project website: 2012. http://faculty.ucmerced.edu/mhyang/project/cvpr12_scm.htm.
Visual tracking via adaptive structural local sparse appearance model project: 2012. http://faculty.ucmerced.edu/mhyang/project/cvpr12_jia_project.htm.
Zhang dataset: 2012. http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm.
International workshop on performance evaluation of tracking and surveillance website: 2013. http://pets2013.net.
Structure preserving object tracker project website: 2013. http://visionlab.tudelft.nl/spot.
Vojir tracking dataset repository: 2013. http://cmp.felk.cvut.cz/~vojirtom/dataset/index.html.
Litiv dataset: 2014. http://www.polymtl.ca/litiv/en/vid/index.php.
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans PAMI. 2012;34(11):2274–82.
Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: CVPR, vol. 1. 2006. pp. 798–805.
Ali A, Aggarwal J. Segmentation and recognition of continuous human activity. In: DREV. 2001. pp. 28–35.
Allili MS, Ziou D. Object of interest segmentation and tracking by using feature selection and active contours. In: CVPR. 2007. pp. 1–8.
An X, Kim J, Han Y. Optimal colour-based mean shift algorithm for tracking objects. IET Comput Vis. 2014;8(3):235–44.
Austvoll I, Kwolek B. Region covariance matrix-based object tracking with occlusions handling. In: Computer Vision and Graphics. 2010. pp. 201–208.
Avidan S. Support vector tracking. IEEE Trans PAMI. 2004;26(8):1064–72.
Avidan S. Ensemble tracking. IEEE Trans PAMI. 2007;29(2):261–71.
Babenko B, Yang MH, Belongie S. Robust object tracking with online multiple instance learning. IEEE Trans PAMI. 2011;33(8):1619–32.
Bai T, Li YF. Robust visual tracking with structured sparse representation appearance model. Pattern Recogn. 2012;45(6):2390–404.
Bai Y, Tang M. Robust visual tracking via ranking SVM. In: ICIP. 2011. pp. 517–520.
Bai Y, Tang M. Robust tracking via weakly supervised ranking SVM. In: CVPR. 2012. pp. 1854–1861.
Bai Y, Tang M. Object tracking via robust multitask sparse representation. IEEE Signal Process Lett. 2014;21(8):909–13.
Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis. 2004;56(3):221–55.
Bao C, Wu Y, Ling H, Ji H. Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012. pp. 1830–1837. http://www.dabi.temple.edu/~hbling/code_data.htm#L1_Tracker.
Bardinet E, Cohen LD, Ayache N. Tracking and motion analysis of the left ventricle with deformable superquadrics. Med Image Anal. 1996;1(2):129–49.
Bay H, Tuytelaars T, Van GL. SURF: Speeded up robust features. In: ECCV. 2006. pp. 404–417.
Bay H, Tuytelaars T, Van GL. Speeded-Up Robust Features (SURF). Comput Vis Image Underst. 2008;110(3):346–59.
Binh ND, Shuichi E, Ejima T. Real-time hand tracking and gesture recognition system. In: GVIP. Citeseer; 2005. pp. 19–21.
Birchfield S. Elliptical head tracking using intensity gradients and color histograms. In: CVPR. 1998. pp. 232–237.
Birchfield ST, Rangarajan S. Spatiograms versus histograms for region-based tracking. In: CVPR, vol. 2. 2005. pp. 1158–1163.
Birchfield ST, Rangarajan S. Spatial histograms for region-based tracking. Electron Telecommun Res Inst (ETRI) J. 2007;29(5):697–9.
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of Annual Conference on Computational Learning Theory. ACM; 1998. pp. 92–100.
Blunsden S, Fisher R. The behave video dataset: ground truthed video for multi-person behavior classification. Annals of the BMVA 2010;4(1-12):4. http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/.
Bradski GR. Computer vision face tracking for use in a perceptual user interface. Intel Technol J. 1998;Q2(2):1–15.
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Brox T, Bruhn A, Papenberg N, Weickert J. High accuracy optical flow estimation based on a theory for warping. In: ECCV. 2004. pp. 25–36.
Cai Z, Wen L, Lei Z, Vasconcelos N, Li SZ. Robust deformable and occluded object tracking with dynamic graph. IEEE Trans IP. 2014;23(12):5497–509.
Chan AB, Liang ZSJ, Vasconcelos N. Privacy preserving crowd monitoring: Counting people without people models or tracking. In: CVPR. 2008. pp. 1–7.
Chapelle O, Scholkopf B, Zien A. Semi-supervised learning. 1st ed. Cambridge: MIT Press; 2006.
Chen F, Wang Q, Wang S, Zhang W, Xu W. Object tracking via appearance modeling and sparse representation. Image Vis Comput. 2011;29(11):787–96.
Chen FS, Fu CM, Huang CL. Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vis Comput. 2003;21(8):745–58.
Chuang CH, Chao YL, Li ZP. Moving object segmentation and tracking using active contour and color classification models. In: ISM. 2010. pp. 73–80.
Collins RT, Lipton AJ, Kanade T, Fujiyoshi H, Duggins D, Tsin Y, Tolliver D, Enomoto N, Hasegawa O, Burt P, et al. A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12, Pittsburg: Carnegie Mellon University; 2000.
Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans PAMI. 2003;25(5):564–77.
Cong Y, Yuan J, Tang Y. Object tracking via online metric learning. In: ICIP. 2012. pp. 417–420.
Cremers D. Dynamical statistical shape priors for level set-based tracking. IEEE Trans PAMI. 2006;28(8):1262–73.
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: CVPR, vol. 1. 2005. pp. 886–893.
Dan Z, Sang N, Huang R, Sun S. Instance transfer boosting for object tracking. Optik-Int J Light Electron Opt. 2013;124(18):3446–50.
Deng P, Zhou L, Wang B. Visual tracking based on local patches and ferns forest. In: ICSP. 2014. pp. 760–763.
Devi RB, Chanu YJ, Singh KM. Discriminative object tracking with subspace representation. Vis Comput. 2021;37:1207–19.
Diwakar M, Patel PK, Gupta K, Chauhan C. Object tracking using joint enhanced color-texture histogram. In: ICIIP. 2013. pp. 160–165.
Donoser M, Bischof H. Efficient Maximally Stable Extremal Region (MSER) tracking. In: CVPR, vol. 1. 2006. pp. 553–560.
Dou J, Qin Q, Tu Z. Improved weighted multiple instance learning for object tracking. Optik-Int J Light Electron Opt. 2015;126(24):5287–93.
Freund Y, Schapire R, Abe N. A short introduction to boosting. J-Jpn Soc Artif Intell. 1999;14(5):771–80.
Gall J, Razavi N, Van Gool L. On-line adaption of class-specific codebooks for instance tracking. In: BMVC. 2010. pp. 1–12.
Gall J, Yao A, Razavi N, Van GL, Lempitsky V. Hough forests for object detection, tracking, and action recognition. IEEE Trans PAMI. 2011;33(11):2188–202.
Gao C, Chen F, Yu JG, Huang R, Sang N. Exemplar-based linear discriminant analysis for robust object tracking. In: ICIP. 2014. pp. 388–392.
Gao C, Sang N, Huang R. Online transfer boosting for object tracking. In: ICPR. 2012. pp. 906–909.
Gao J, Ling H, Hu W, Xing J. Transfer learning based visual tracking with Gaussian processes regression. In: ECCV. 2014. pp. 188–203.
Ge SS, Yang Y, Lee TH. Hand gesture recognition and tracking based on distributed locally linear embedding. Image Vis Comput. 2008;26(12):1607–20.
Gelzinis A, Verikas A, Bacauskiene M. Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recogn. 2007;40(9):2367–72.
Geng W, Cosman P, Berry CC, Feng Z, Schafer WR. Automatic tracking, feature extraction and classification of \(C. elegans\) phenotypes. IEEE Trans Biomed Eng. 2004;51(10):1811–20.
Georgescu B, Meer P. Point matching under large image deformations and illumination changes. IEEE Trans PAMI. 2004;26(6):674–88.
Giebel J, Gavrila DM, Schnörr C. A Bayesian framework for multi-cue 3D object tracking. In: ECCV. 2004. pp. 241–252.
Godec M, Leistner C, Saffari A, Bischof H. On-line random Naive Bayes for tracking. In: ICPR. 2010. pp. 3545–3548.
Grabner H, Bischof H. On-line boosting and vision. In: CVPR, vol. 1. 2006. pp. 260–267.
Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: BMVC. 2006. pp. 1–10.
Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: ECCV. 2008. pp. 234–247.
Grabner M, Grabner H, Bischof H. Learning features for tracking. In: CVPR. 2007. pp. 1–8.
Ha SW, Moon YH. Multiple object tracking using SIFT features and location matching. Int J Smart Home. 2011;5(4):17–26.
Han Z, Jiao J, Zhang B, Ye Q, Liu J. Visual object tracking via sample-based adaptive sparse representation (AdaSR). Pattern Recogn. 2011;44(9):2170–83.
Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans SMC. 1973;3(6):610–21.
Hare S, Saffari A, Torr PH: Struck: Structured output tracking with kernels. In: ICCV. 2011. pp. 263–270.
Haritaoglu I, Flickner M. Detection and tracking of shopping groups in stores. In: CVPR, vol. 1. 2001. pp. 431–438.
Haritaoglu I, Harwood D, Davis LS. W4: real-time surveillance of people and their activities. IEEE Trans PAMI. 2000;22(8):809–30.
Harris CG, Stephens M, et al. A combined corner and edge detector. In: Alvey vision conference. 1988. pp. 10–5244.
Hashemzadeh M, Pan G, Yao M. Counting moving people in crowds using motion statistics of feature-points. Multimed Tools Appl. 2014;72(1):453–87.
He C, Zheng YF, Ahalt SC. Object tracking using the Gabor wavelet transform and the golden section algorithm. IEEE Trans Multimedia. 2002;4(4):528–38.
He W, Yamashita T, Lu H, Lao S. SURF tracking. In: ICCV. 2009. pp. 1586–1592.
Henriques JF, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Trans PAMI. 2015;37(3):583–96.
Ho J, Lee KC, Yang MH, Kriegman D. Visual tracking using learned linear subspaces. In: CVPR, vol. 1. 2004. pp. 782–789.
Hong S, You T, Kwak S, Han B. Online tracking by learning discriminative saliency map with convolutional neural network. arXiv preprint arXiv:1502.06796. 2015. pp. 1–10.
Hong X, Chang H, Shan S, Zhong B, Chen X, Gao W. Sigma set based implicit online learning for object tracking. IEEE Signal Process Lett. 2010;17(9):807–10.
Howe NR. Silhouette lookup for automatic pose tracking. In: CVPRW. 2004. pp. 15–22.
Hu W, Li X, Luo W, Zhang X, Maybank S, Zhang Z. Single and multiple object tracking using log-Euclidean Riemannian subspace and block-division appearance model. IEEE Trans PAMI. 2012;34(12):2420–40.
Hu W, Li X, Zhang X, Shi X, Maybank S, Zhang Z. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int J Comput Vis. 2011;91(3):303–27.
Huang B, Xu T, Li J, Shen Z, Chen Y. Transfer learning-based discriminative correlation filter for visual tracking. Pattern Recogn. 2020;100.
Jiang N, Liu W, Su H, Wu Y. Tracking low resolution objects by metric preservation. In: CVPR. 2011. pp. 107157–107172.
Jiang N, Liu W, Wu Y. Order determination and sparsity-regularized metric learning adaptive visual tracking. In: CVPR. 2012. pp. 1956–1963.
Kamijo S, Matsushita Y, Ikeuchi K, Sakauchi M. Traffic monitoring and accident detection at intersections. IEEE Trans ITS. 2000;1(2):108–18.
Kar A. Skeletal tracking using Microsoft kinect. Methodology. 2010;1:1–11.
Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics and protocol. IEEE Trans PAMI. 2009;31(2):319–36.
Khare A, Tiwary US. Daubechies complex wavelet transform based moving object tracking. In: CIISP. 2007. pp. 36–40.
Kim DH, Kim HK, Ko SJ, et al. Spatial color histogram based center voting method for subsequent object tracking and segmentation. Image Vis Comput. 2011;29(12):850–60.
Kim Z. Real time object tracking based on dynamic feature grouping with background subtraction. In: CVPR. 2008. pp. 1–8.
Klein D. Bobot—bonn benchmark on tracking. Tech. rep. 2010. http://www.iai.uni-bonn.de/~kleind/tracking/index.htm.
Kochavi E, Goldsher D, Azhari H. Method for rapid MRI needle tracking. Magn Reson Med. 2004;51(5):1083–7.
Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Cehovin Zajc L, Vojir T, Hager G, Lukezic A, Eldesokey A, Fernandez G. The visual object tracking VOT2017 challenge results. In: TCCVW; 2017.
Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Čehovin L, Vojír T, Häger G, Lukežič A, Fernandez Dominguez G, Gupta A, Petrosino A, Memarmoghadam A, Garcia-Martin A, Solís Montero A, Vedaldi A, Robinson A, Ma A, Varfolomieiev A, Chi Z. The visual object tracking VOT2016 challenge results. 2016. pp. 777–823.
Kristan M, Leonardis A, Matas J, Felsberg M, Pfugfelder R, Čehovin Zajc L, Vojir T, Bhat G, Lukezic A, Eldesokey A, Fernandez G, et al. The sixth visual object tracking VOT2018 challenge results. In: ECCVW; 2018.
Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojir T, Häger G, Nebehay G, Pflugfelder R. The visual object tracking VOT2015 challenge results. In: Workshop on the VOT2015 Visual Object Tracking Challenge; 2015.
Kristan M, Matas J, Leonardis A, Felsberg M, Pflugfelder R, Kamarainen JK, Čehovin Zajc L, Drbohlav O, Lukezic A, Berg A, Eldesokey A, Kapyla J, Fernandez G. The seventh visual object tracking VOT2019 challenge results. In: ICCVW; 2019.
Kristan M, Pflugfelder R, Leonardis A, Matas J, Cehovin L, Nebehay G, Vojir T, Fernandez G, Lukezic A, Dimitriev A, Petrosino A, Saffari A, Li B, Han B, Heng C, Garcia C, Pangersic D, Hager G, Khan FS, Oven F, Possegger H, Bischof H, Nam H, Zhu J, Li J, Choi JY, Choi JW, Henriques JF, van de Weijer J, Batista J, Lebeda K, Ofjall K, Yi KM, Qin L, Wen L, Maresca ME, Danelljan M, Felsberg M, Cheng MM, Torr P, Huang Q, Bowden R, Hare S, Lim SY, Hong S, Liao S, Hadfield S, Li SZ, Duffner S, Golodetz S, Mauthner T, Vineet V, Lin W, Li Y, Qi Y, Lei Z, Niu Z. The visual object tracking VOT2014 challenge results. In: ECCV. 2014. pp. 191–217.
Kristan M, Pflugfelder R, Leonardis A, Matas J, Porikli F, Cehovin L, Nebehay G, Fernandez G, Vojir T, Gatt A, et al. The visual object tracking vot2013 challenge results. In: ICCVW. 2013. pp. 98–111.
Lai DX, Chang YH, Zhong ZH. Active contour tracking of moving objects using edge flows and Ant colony optimization in video sequences. In: Advances in Image and Video Technology. 2009. pp. 1104–1116.
Leistner C, Saffari A, Bischof H. MIForests: Multiple-instance learning with randomized trees. In: ECCV. 2010. pp. 29–42.
Leistner C, Saffari A, Roth PM, Bischof H. On robustness of on-line boosting-A competitive study. In: ICCVW. 2009. pp. 1362–1369.
Lenser S, Veloso M. Visual sonar: Fast obstacle avoidance using monocular vision. In: IROS, vol. 1. 2003. pp. 886–891.
Lepetit V, Fua P. Keypoint recognition using randomized trees. IEEE Trans PAMI. 2006;28(9):1465–79.
Lepetit V, Lagger P, Fua P. Randomized trees for real-time keypoint recognition. In: CVPR, vol. 2. 2005. pp. 775–781.
Li F, Kim T, Humayun A, Tsai D, Rehg J. Video segmentation by tracking many figure-ground segments. In: ICCV. 2013. pp. 2192–2199.
Li G, Huang Q, Qin L, Jiang S. SSOCBT: a robust semi-supervised online CovBoost tracker that uses samples differently. IEEE Trans CSVT. 2013;23(4):695–709.
Li G, Liang D, Huang Q, Jiang S, Gao W. Object tracking using incremental 2D-LDA learning and Bayes inference. In: ICIP. 2008. pp. 1568–1571.
Li K, He F, Yu H, Chen X. A parallel and robust object tracking approach synthesizing adaptive bayesian learning and improved incremental subspace learning. Front Comput Sci. 2019;13(5):1116–35.
Li M, Kwok JT, Lu BL. Online multiple instance learning with no regret. In: CVPR. 2010. pp. 1395–1401.
Li M, Zhang Z, Huang K, Tan T. Robust visual tracking based on simplified biologically inspired features. In: ICIP. 2009. pp. 4113–4116.
Li N, Liu L, Xu D. Corner feature based object tracking using adaptive Kalman filter. In: ICSP. 2008. pp. 1432–1435.
Li S, Lee MC. Fast visual tracking using motion saliency in video. In: ICASSP, vol. 1. 2007. pp. 1073–1076.
Li X, Dick A, Shen C, Van DHA, Wang H. Incremental learning of 3D-DCT compact representations for robust visual tracking. IEEE Trans PAMI. 2013;35(4):863–81.
Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD. A survey of appearance models in visual object tracking. ACM TIST. 2013;4(4):1–58.
Li X, Hu W, Zhang Z, Zhang X, Luo G. Robust visual tracking based on incremental tensor subspace learning. In: ICCV. 2007. pp. 1–8.
Li X, Hu W, Zhang Z, Zhang X, Zhu M, Cheng J. Visual tracking via incremental log-Euclidean Riemannian subspace learning. In: CVPR. 2008. pp. 1–8.
Li Y. On incremental and robust subspace learning. Pattern Recogn. 2004;37(7):1509–18.
Lin RS, Yang MH, Levinson SE. Object tracking using incremental Fisher discriminant analysis. In: ICPR, vol. 2. 2004. pp. 757–760.
Lin Z, Davis LS, Doermann D, DeMenthon D. Hierarchical part-template matching for human detection and segmentation. In: ICCV. 2007. pp. 1–8.
Liu R, Cheng J, Lu H. A robust boosting tracker with minimum error bound in a co-training framework. In: ICCV. 2009. pp. 1459–1466.
Liu X, Yu T. Gradient feature selection for online boosting. In: ICCV. 2007. pp. 1–8.
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.
Lu Y, Liu J, Liu W, Ma S, Xiu X, Liu W, Chen H. Detecting moving objects from dynamic background combining subspace learning with mixed norm approach. Multimedia Tools Appl. 2020;79.
Lucas BD, Kanade T, et al. An iterative image registration technique with an application to stereo vision. In: IJCAI. 1981. pp. 18747–18766.
Luo W, Li X, Li W, Hu W. Robust visual tracking via transfer learning. In: ICIP. 2011. pp. 485–488.
Ma G, Chen C, Li S, Peng C, Hao A, Qin H. Salient object detection via multiple instance joint re-learning. IEEE Trans Multimedia. 2019;22(2):324–36.
Machiraju GSR, Kumari K, Sharif SK. Object detection and tracking for community surveillance using transfer learning. In: International Conference on Inventive Computation Technologies (ICICT). 2021. pp. 1035–1042.
Maggio E, Cavallaro A. Video tracking: theory and practice. 1st ed. Hoboken: Wiley; 2011.
Mahadevan V, Vasconcelos N. Biologically inspired object tracking using center-surround saliency mechanisms. IEEE Trans PAMI. 2013;35(3):541–54.
Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans PAMI. 2011;33(11):2259–72.
Mojaev A, Zell A. Image decomposition and tracking with Gabor wavelets. Mach Intell Robot Control. 2003;1(1):3–9.
Mondal A. Neuro-probabilistic model for object tracking. Pattern Anal Appl. 2019; 1–20.
Mondal A, Ghosh A, Ghosh S. Neural approach for object tracking in complex environment. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2016. 22:1–6.
Mondal A, Ghosh A, Ghosh S. Prototypes based discriminative appearance model for object tracking. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP). 2016. pp. 2:1–2:8.
Mondal A, Ghosh A, Ghosh S. Scaled and oriented object tracking using ensemble of multilayer perceptrons. Appl Soft Comput. 2018;73:1081–94.
Mondal A, Ghosh S, Ghosh A. Efficient silhouette-based contour tracking using local information. Soft Comput. 2016;20(2):785–805.
Mondal A, Ghosh S, Ghosh A. Partially camouflaged object tracking using modified probabilistic neural network and fuzzy energy based active contour. Int J Comput Vis. 2017;122(1):116–48.
Mountney P, Yang GZ. Soft tissue tracking for minimally invasive surgery: Learning local deformation online. In: MICCAI. 2008. pp. 364–372.
Mussi L, Ivekovic S, Cagnoni S. Markerless articulated human body tracking from multi-view video with GPU-PSO. In: Evolvable Systems: from Biology to Hardware. 2010. pp. 97–108.
Nebehay G, Pflugfelder R. TLM: tracking-learning-matching of keypoints. In: ICDSC. 2013. pp. 1–6.
Nejhum SS, Ho J, Yang MH. Online visual tracking with histograms and articulating blocks. Comput Vis Image Underst. 2010;114(8):901–14.
Nguyen HT, Smeulders A. Tracking aspects of the foreground against the background. In: ECCV. 2004. pp. 446–456.
Nguyen HT, Smeulders AW. Fast occluded object tracking by a robust appearance filter. IEEE Trans PAMI. 2004;26(8):1099–104.
Ning J, Zhang L, Zhang D, Wu C. Robust object tracking using joint color-texture histogram. Int J Pattern Recogn Artif Intell. 2009;23(7):1245–63.
Oikonomidis I, Kyriazis N, Argyros AA. Tracking the articulated motion of two strongly interacting hands. In: CVPR. 2012. pp. 1862–1869.
Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans PAMI. 2002;24(7):971–87.
Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. IJCV. 2015;111(2):213–28.
Özuysal M, Calonder M, Lepetit V, Fua P. Fast keypoint recognition using random ferns. IEEE Trans PAMI. 2010;32(3):448–61.
Palmer SE. Vision science: photons to phenomenology. 1st ed. London: MIT Press; 1999.
Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.
Parag T, Porikli F, Elgammal A. Boosting adaptive linear weak classifiers for online learning and tracking. In: CVPR. 2008. pp. 1–8.
Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans PAMI. 2000;22(3):266–80.
Park Y, Lepetit V, Woo W. Multiple 3D object tracking for augmented reality. In: Proceedings of IEEE/ACM International Symposium on Mixed and Augmented Reality. 2008. pp. 117–120.
Paschalakis S, Bober M. Real-time face detection and tracking for mobile videoconferencing. Real-Time Imaging. 2004;10(2):81–94.
Pernici F, Del BA. Object tracking by oversampling local features. IEEE Trans PAMI. 2014;36(12):2538–51.
Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on Lie Algebra. In: CVPR, vol. 1. 2006. pp. 728–735.
Prakash O, Khare A. Tracking of non-rigid object in complex wavelet domain. J Signal Inf Process. 2011;2(2):105–11.
Quinn JA, Nakibuule R. Traffic flow monitoring in crowded cities. In: AAAI Spring Symposium: Artificial Intelligence for Development. 2010. pp. 73–78. AAAI.
Rao C, Yao C, Bai X, Qiu W, Liu W. Online random ferns for robust visual tracking. In: ICPR. 2012. pp. 1447–1450.
Rémi T, Bernard M. Probabilistic matching algorithm for keypoint based object tracking using a delaunay triangulation. In: WIAMIS. 2007. pp. 1–17.
Ren T, Qiu Z, Liu Y, Yu T, Bei J. Soft-assigned bag of features for object tracking. Multimedia Syst. 2015;21(2):189–205.
Ren X, Malik J. Tracking as repeated figure/ground segmentation. In: CVPR. 2007. pp. 1–8.
Rosenhahn B, Kersting U, Andrew S, Brox T, Klette R, Seidel HP. A silhouette based human motion tracking system. Tectnical Report 1530, CITR, University of Auckland, New Zealand; 2005.
Ross DA, Lim J, Lin RS, Yang MH. Incremental learning for robust visual tracking. Int J Comput Vis. 2008;77(13):125–41.
Ruitao L, Xin J, Xiaogang Y, Jiwei F, Lu C, Dalei L. Robust object tracking via graph-based transductive learning with subspace representation. In: Chinese Automation Congress (CAC). 2020. pp. 4852–4856.
Saffari A, Leistner C, Santner J, Godec M, Bischof H. On-line random forests. In: ICCVW. 2009. pp. 1393–1400.
Sahouria E, Zakhor A. A trajectory based video indexing system for street surveillance. In: ICIP. 1999. pp. 24–28.
Sand P, Teller S. Particle video: long-range motion estimation using point trajectories. IJCV. 2008;80(1):72–91.
Santner J, Leistner C, Saffari A, Pock T, Bischof H. PROST: parallel robust online simple tracking. In: CVPR. 2010. pp. 723–730.
Schwarz LA, Mkhitaryan A, Mateus D, Navab N. Human skeleton tracking from depth data using geodesic distances and optical flow. Image Vis Comput. 2012;30(3):217–26.
Shi J, Tomasi C. Good features to track. In: CVPR. 1994. pp. 593–600.
Shi X, Zhang X, Liu Y, Hu W, Ling H. Multi-cue based multi-target tracking using online random forests. In: ICASSP. 2011. pp. 1185–1188.
Shotton J, Johnson M, Cipolla R. Semantic texton forests for image categorization and segmentation. In: CVPR. 2008. pp. 1–8.
Shuo H, Na W, Huajun S. Object tracking method based on SURF. AASRI Procedia. 2012;3:351–6.
Sidibé D, Fofi D, Mériaudeau F. Using visual saliency for object tracking with particle filters. In: ECSP. 2010. pp. 1776–1780.
Silveira G, Malis E. Real-time visual tracking under arbitrary illumination changes. In: CVPR, vol. 1. 2007. pp. 1–6.
Sivic J, Schaffalitzky F, Zisserman A. Object level grouping for video shots. In: ECCV. 2004. pp. 85–98.
Sivic J, Schaffalitzky F, Zisserman A. Object level grouping for video shots. Int J Comput Vis. 2006;67(2):189–210.
Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual tracking: an experimental survey. IEEE Trans PAMI. 2014;36(7):1442–68.
Song C, Zhao H, Jing W, Bi Y. Robust video stabilization based on bounded path planning. In: ICPR. 2012. pp. 3684–3687.
Sui Y, Tang Y, Zhang L, Wang G. Visual tracking via subspace learning: a discriminative approach. Int J Comput Vis. 2018;126(5):515–36.
Sun X, Yao H, Zhang S. A novel supervised level set method for non-rigid object tracking. In: CVPR. 2011. pp. 3393–3400.
Sundaresan A, Chellappa R. Multicamera tracking of articulated human motion using shape and motion cues. IEEE Trans IP. 2009;18(9):2114–26.
Ta DN, Chen WC, Gelfand N, Pulli K. SURFTrac: efficient tracking and continuous object recognition using local feature descriptors. In: CVPR. 2009. pp. 2937–2944.
Tai JC, Tseng ST, Lin CP, Song KT. Real-time image tracking for automatic traffic monitoring and enforcement applications. Image Vis Comput. 2004;22(6):485–501.
Takala V, Pietikainen M. Multi-object tracking using color, texture and motion. In: CVPR. 2007. pp. 1–7.
Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans IP. 2010;19(6):1635–50.
Tang F, Tao H. Probabilistic object tracking with dynamic attributed relational feature graph. IEEE Trans CSVT. 2008;18(8):1064–74.
Tissainayagam P, Suter D. Object tracking in image sequences using point features. Pattern Recogn. 2005;38(1):105–13.
Tran S, Davis L. Robust object trackinng with regional affine invariant features. In: ICCV. 2007. pp. 1–8.
Tran TTH, Marchand E. Real-time keypoints matching: application to visual servoing. In: ICRA. 2007. pp. 3787–3792.
Tuzel O, Porikli F, Meer P. Region covariance: A fast descriptor for detection and classification. In: ECCV. 2006. pp. 589–600.
Vacchetti L, Lepetit V, Fua P. Stable real-time 3D tracking using online and offline information. IEEE Trans PAMI. 2004;26(10):1385–91.
Vaswani N, Bouwmans T, Javed S, Narayanamurthy P. Robust subspace learning: robust pca, robust subspace tracking, and robust subspace recovery. IEEE Signal Process Mag. 2018;35(4):32–55.
Vaswani N, Rathi Y, Yezzi A, Tannenbaum A. PF-MT with an interpolation effective basis for tracking local contour deformations. IEEE Trans IP. 2008;19(4):841–57.
Veenman CJ, Reinders MJ, Backer E. Resolving motion correspondence for densely moving points. IEEE Trans PAMI. 2001;23(1):54–72.
Veeraraghavan A, Chellappa R, Srinivasan M. Shape-and-behavior encoded tracking of Bee dances. IEEE Trans PAMI. 2008;30(3):463–76.
Venkatesh BR, Makur A. Kernel-based spatial-color modeling for fast moving object tracking. In: ICASSP, vol. 1. 2007. pp. 901–904.
Visentini I, Snidaro L, Foresti GL. Dynamic ensemble for target tracking. In: International Workshop on Visual Surveillance. 2008. pp. 1–8.
Wang J, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Trans IP. 2008;17(2):235–40.
Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recogn. 2003;36(3):585–601.
Wang LJ, Zhang H. Visual tracking based on an improved online multiple instance learning algorithm. Comput Intell Neurosci. 2015;2016:1–9.
Wang N, Li S, Gupta A, Yeung DY. Transferring rich feature hierarchies for robust visual tracking. 2015. pp. 1–9.
Wang Q, Chen F, Xu W, Yang MH. Online discriminative object tracking with local sparse representation. In: WACV. 2012. pp. 425–432.
Wang Q, Chen F, Yang J, Xu W, Yang MH. Transferring visual prior for online object tracking. IEEE Trans IP. 2012;21(7):3296–305.
Wang S, Lu H, Yang F, Yang MH. Superpixel tracking. In: ICCV. 2011. pp. 1323–1330.
Wang T, Gu IY, Shi P. Object tracking using incremental 2D-PCA learning and ML estimation. In: ICASSP, vol. 1. 2007. pp. 933–936.
Wang W, Nevatia R. Robust object tracking using constellation model with superpixel. In: ACCV. 2012. pp. 191–204.
Wang X, Hua G, Han TX. Discriminative tracking by metric learning. In: ECCV. 2010. pp. 200–214.
Wen J, Gao X, Yuan Y, Tao D, Li J. Incremental tensor biased discriminant analysis: a new color-based visual tracking method. Neurocomputing. 2010;73(4):827–39.
Wen J, Li X, Gao X, Tao D. Incremental learning of weighted tensor subspace for visual tracking. In: ICSMC. 2009. pp. 3688–3693.
Werlberger M, Trobin W, Pock T, Wedel A, Cremers D, Bischof H. Anisotropic Huber-L1 optical flow. In: BMVC. 2009. pp. 1–11.
Wolfe JM. Guided search 2.0 A revised model of visual search. Psychonomic Bull Rev. 1994;1(2):202–38.
Wu Y, Cheng J, Wang J, Lu H. Real-time visual tracking via incremental covariance tensor learning. In: CVPR. 2009. pp. 1631–1638.
Wu Y, Cheng J, Wang J, Lu H, Wang J, Ling H, Blasch E, Bai L. Real-time probabilistic covariance tracking with efficient model update. IEEE Trans IP. 2012;21(5):2824–37.
Wu Y, Fan J. Contextual flow. In: CVPR. 2009. pp. 33–40.
Wu Y, Lim J, Yang MH. Online object tracking: a benchmark. In: CVPR. 2013. pp. 2411–2418.
Wu Y, Lim J, Yang MH. Object tracking benchmark. IEEE Trans PAMI. 2015;37(9):1834–48.
Xu C, Tao W, Meng Z, Feng Z. Robust visual tracking via online multiple instance learning with Fisher information. Pattern Recogn. 2015;48(12):3917–26.
Xu Z, Shi P, Xu X. Adaptive subclass discriminant analysis color space learning for visual tracking. In: Pacific-Rim Conference on Multimedia. 2008. pp. 902–905.
Yan Y, Wang J, Li C, Wu Z. Object tracking using SIFT features in a particle filter. In: ICCSN. 2011. pp. 384–388.
Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure. In: CVPR, vol. 1. 2005. pp. 176–183.
Yang F, Lu H, Chen YW. Bag of features tracking. In: ICPR. 2010. pp. 153–156.
Yang F, Lu H, Yang MH. Learning structured visual dictionary for object tracking. Image Vis Comput. 2013;31(12):992–9.
Yang F, Lu H, Yang MH. Robust superpixel tracking. IEEE Trans IP. 2014;23(4):1639–51.
Yang F, Lu HH, Zhang W, Yang GM. Visual tracking via bag of features. IET Image Proc. 2012;6(2):115–28.
Yang G, Hu Z, Tang J. Robust visual tracking via incremental subspace learning and local sparse representation. Arab J Sci Eng. 2018;43(2):627–36.
Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A. Robust tracking with weighted online structured learning. In: ECCV. 2012. pp. 158–172.
Yao R, Shi Q, Shen C, Zhang Y, Hengel A. Part-based visual tracking with online latent structural learning. In: CVPR. 2013. pp. 2363–2370.
Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Comput Surv. 2006;38(4):1–45.
Yilmaz A, Li X, Shah M. Object contour tracking using level sets. In: ACCV, vol. 1. 2004. pp. 1–7.
Yin Z, Collins RT. Shape constrained figure-ground segmentation and tracking. In: CVPR. 2009. pp. 731–738.
Yokoyama M, Poggio T. A contour-based moving object detection and tracking. In: WVSPETS. 2005. pp. 271–276.
Yu L, Zhang X, Zheng L. A new object tracking algorithm based on the fast discrete curvelet transform. Int J Signal Process Image Process Pattern Recogn. 2014;7(1):53–64.
Yuan X, Li D, Mohapatra D, Elhoseny M. Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Comput Elect Eng. 2018;70:813–25.
Yuk JS, Wong KYK, Chung RH, Chow K, Chin FY, Tsang KS. Object-based surveillance video retrieval system with real-time indexing methodology. In: Image Analysis and Recognition. 2007. pp. 626–637.
Zeisl B, Leistner C, Saffari A, Bischof H. On-line semi-supervised multiple-instance boosting. In: CVPR. 2010. pp. 1879–1879.
Zhang D, Li W, Sun M, Yu H. Saliency map for object tracking. Int J Signal Process Image Process Pattern Recogn. 2015;8(10):233–40.
Zhang G, Yuan Z, Zheng N, Sheng X, Liu T. Visual saliency based object tracking. In: ACCV. 2009. pp. 193–203.
Zhang J, Fang J, Lu J. Mean-shift algorithm integrating with SURF for tracking. In: ICNC, vol. 2. 2011. pp. 960–963.
Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 2013;46(1):397–411.
Zhang L, Varadarajan J, Nagaratnam Suganthan P, Ahuja N, Moulin P. Robust visual tracking using oblique random forests. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
Zhang S, Stentiford F. A saliency based object tracking method. In: CBMI. 2008. pp. 512–517.
Zhang T, Ghanem B, Liu S, Ahuja N. Low-rank sparse learning for robust visual tracking. In: ECCV. 2012. pp. 470–484.
Zhang T, Ghanem B, Liu S, Ahuja N. Robust visual tracking via structured multi-task sparse learning. IJCV. 2013;101(2):367–83.
Zhao Q, Yang Z, Tao H. Differential Earth Mover’s distance with its applications to visual tracking. IEEE Trans PAMI. 2010;32(2):274–87.
Zhong Q, Qingqing Z, Tengfei G. Moving object tracking based on codebook and particle filter. Procedia Eng. 2012;29:174–8.
Zhong W, Lu H, Yang MH. Robust object tracking via sparsity-based collaborative model. In: CVPR. 2012. pp. 1838–1845.
Zhou H, Yuan Y, Shi C. Object tracking using SIFT features and mean shift. Comput Vis Image Underst. 2009;113(3):345–52.
Zhou Z, Ou X, Xu J. SURF feature detection method used in object tracking. In: ICMLC, vol. 4. 2013. pp. 1865–1868.
Zhu X. Semi-supervised learning literature survey. Tectnical Report 1530, Madison: University of Wisconsin; 2007.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
All authors declare that they have no conflicts of interest.
Ethical Approval
This article does no contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mondal, A. Supervised Machine Learning Approaches for Moving Object Tracking: A Survey. SN COMPUT. SCI. 3, 146 (2022). https://doi.org/10.1007/s42979-022-01040-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-022-01040-0