Skip to main content

Advertisement

Log in

Supervised Machine Learning Approaches for Moving Object Tracking: A Survey

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Object tracking is a very interesting problem in computer vision. Numerous algorithms have been developed to solve object tracking problems for several decades. Among various techniques, in this article, we review most of the existing traditional supervised machine learning-based moving object tracking approaches before the year 2017. We also discuss the several evaluation measures and various datasets considered in the literature. We hope that this survey helps the readers to acquire valuable knowledge about the literature of traditional supervised learning-based tracking algorithms and to choose the most suitable algorithm for their particular tracking tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Object, target and object of interest are used inter changeably in this article.

  2. Or test frame or current frame or \(t\text {th}\) frame.

  3. Or training frame or previous frame or \((t-1){\text {th}}\) frame.

References

  1. The birchfield dataset. 1998. http://www.ces.clemson.edu/~stb/research/headtracker/seq/.

  2. Tracking of abrupt motion project website: 1998. http://cv.snu.ac.kr/research/~wlmctracker/index.html.

  3. CAVIAR: Context aware vision using image-based active recognition. 2002. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

  4. CAVIAR test case scenarios. 2002. http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.

  5. FRAGtrack dataset: 2006. http://www.cs.technion.ac.il/~amita/fragtrack/fragtrack.htm.

  6. Haibin ling code and data website: 2006. http://www.dabi.temple.edu/~hbling/code_data.htm#L1_Tracker.

  7. International workshop on performance evaluation of tracking and surveillance website: 2006. http://www.cvg.rdg.ac.uk/PETS2006/index.html.

  8. Incremental learning for robust visual tracking project website: 2007. http://www.cs.utoronto.ca/~dross/ivt/.

  9. Adaptive regression tracking project website: 2008. https://www.cvl.isy.liu.se/research/adaptive-regression-tracking/adaptive-regression-tracking/.

  10. Visual tracking with integral histograms and articulating blocks project website: 2008. http://www.cise.ufl.edu/~smshahed/tracking.html.

  11. Cehovin dataset. 2009. http://www.vicos.si/User:Lukacu/Research/Tracking.

  12. MILtrack dataset: 2009. http://vision.ucsd.edu/~bbabenko/miltrack.shtml.

  13. Tracking of a non-rigid object project website: 2009. http://cv.snu.ac.kr/research/~bhmctracker/index.html.

  14. PROST dataset: 2010. http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php.

  15. Tracking by sampling trackers project website: 2010. http://cv.snu.ac.kr/research/~vts/.

  16. Visual tracking decomposition: 2010. http://cv.snu.ac.kr/research/~vtd/.

  17. Godec dataset: 2011. http://lrs.icg.tugraz.at/research/houghtrack/index.php.

  18. Superpixel tracking project website: 2011. http://ice.dlut.edu.cn/lu/Project/iccv_spt_webpage/iccv_spt.htm.

  19. Visual tracking datasets of york university. 2011. http://www.cse.yorku.ca/vision/research/visual-tracking/.

  20. Zdenek kallal’s website: 2011. http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/.

  21. Locally orderless tracking project website: 2012. http://www.eng.tau.ac.il/~oron/LOT/LOT.html.

  22. Robust object tracking via sparsity-based collaborative model project website: 2012. http://faculty.ucmerced.edu/mhyang/project/cvpr12_scm.htm.

  23. Visual tracking via adaptive structural local sparse appearance model project: 2012. http://faculty.ucmerced.edu/mhyang/project/cvpr12_jia_project.htm.

  24. Zhang dataset: 2012. http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm.

  25. International workshop on performance evaluation of tracking and surveillance website: 2013. http://pets2013.net.

  26. Structure preserving object tracker project website: 2013. http://visionlab.tudelft.nl/spot.

  27. Vojir tracking dataset repository: 2013. http://cmp.felk.cvut.cz/~vojirtom/dataset/index.html.

  28. Litiv dataset: 2014. http://www.polymtl.ca/litiv/en/vid/index.php.

  29. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans PAMI. 2012;34(11):2274–82.

    Article  Google Scholar 

  30. Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: CVPR, vol. 1. 2006. pp. 798–805.

  31. Ali A, Aggarwal J. Segmentation and recognition of continuous human activity. In: DREV. 2001. pp. 28–35.

  32. Allili MS, Ziou D. Object of interest segmentation and tracking by using feature selection and active contours. In: CVPR. 2007. pp. 1–8.

  33. An X, Kim J, Han Y. Optimal colour-based mean shift algorithm for tracking objects. IET Comput Vis. 2014;8(3):235–44.

    Article  Google Scholar 

  34. Austvoll I, Kwolek B. Region covariance matrix-based object tracking with occlusions handling. In: Computer Vision and Graphics. 2010. pp. 201–208.

  35. Avidan S. Support vector tracking. IEEE Trans PAMI. 2004;26(8):1064–72.

    Article  Google Scholar 

  36. Avidan S. Ensemble tracking. IEEE Trans PAMI. 2007;29(2):261–71.

    Article  Google Scholar 

  37. Babenko B, Yang MH, Belongie S. Robust object tracking with online multiple instance learning. IEEE Trans PAMI. 2011;33(8):1619–32.

    Article  Google Scholar 

  38. Bai T, Li YF. Robust visual tracking with structured sparse representation appearance model. Pattern Recogn. 2012;45(6):2390–404.

    Article  MATH  Google Scholar 

  39. Bai Y, Tang M. Robust visual tracking via ranking SVM. In: ICIP. 2011. pp. 517–520.

  40. Bai Y, Tang M. Robust tracking via weakly supervised ranking SVM. In: CVPR. 2012. pp. 1854–1861.

  41. Bai Y, Tang M. Object tracking via robust multitask sparse representation. IEEE Signal Process Lett. 2014;21(8):909–13.

    Article  Google Scholar 

  42. Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis. 2004;56(3):221–55.

    Article  MATH  Google Scholar 

  43. Bao C, Wu Y, Ling H, Ji H. Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012. pp. 1830–1837. http://www.dabi.temple.edu/~hbling/code_data.htm#L1_Tracker.

  44. Bardinet E, Cohen LD, Ayache N. Tracking and motion analysis of the left ventricle with deformable superquadrics. Med Image Anal. 1996;1(2):129–49.

    Article  Google Scholar 

  45. Bay H, Tuytelaars T, Van GL. SURF: Speeded up robust features. In: ECCV. 2006. pp. 404–417.

  46. Bay H, Tuytelaars T, Van GL. Speeded-Up Robust Features (SURF). Comput Vis Image Underst. 2008;110(3):346–59.

    Article  Google Scholar 

  47. Binh ND, Shuichi E, Ejima T. Real-time hand tracking and gesture recognition system. In: GVIP. Citeseer; 2005. pp. 19–21.

  48. Birchfield S. Elliptical head tracking using intensity gradients and color histograms. In: CVPR. 1998. pp. 232–237.

  49. Birchfield ST, Rangarajan S. Spatiograms versus histograms for region-based tracking. In: CVPR, vol. 2. 2005. pp. 1158–1163.

  50. Birchfield ST, Rangarajan S. Spatial histograms for region-based tracking. Electron Telecommun Res Inst (ETRI) J. 2007;29(5):697–9.

    Google Scholar 

  51. Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of Annual Conference on Computational Learning Theory. ACM; 1998. pp. 92–100.

  52. Blunsden S, Fisher R. The behave video dataset: ground truthed video for multi-person behavior classification. Annals of the BMVA 2010;4(1-12):4. http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/.

  53. Bradski GR. Computer vision face tracking for use in a perceptual user interface. Intel Technol J. 1998;Q2(2):1–15.

    Google Scholar 

  54. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  MATH  Google Scholar 

  55. Brox T, Bruhn A, Papenberg N, Weickert J. High accuracy optical flow estimation based on a theory for warping. In: ECCV. 2004. pp. 25–36.

  56. Cai Z, Wen L, Lei Z, Vasconcelos N, Li SZ. Robust deformable and occluded object tracking with dynamic graph. IEEE Trans IP. 2014;23(12):5497–509.

    MathSciNet  MATH  Google Scholar 

  57. Chan AB, Liang ZSJ, Vasconcelos N. Privacy preserving crowd monitoring: Counting people without people models or tracking. In: CVPR. 2008. pp. 1–7.

  58. Chapelle O, Scholkopf B, Zien A. Semi-supervised learning. 1st ed. Cambridge: MIT Press; 2006.

    Book  Google Scholar 

  59. Chen F, Wang Q, Wang S, Zhang W, Xu W. Object tracking via appearance modeling and sparse representation. Image Vis Comput. 2011;29(11):787–96.

    Article  Google Scholar 

  60. Chen FS, Fu CM, Huang CL. Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vis Comput. 2003;21(8):745–58.

    Article  Google Scholar 

  61. Chuang CH, Chao YL, Li ZP. Moving object segmentation and tracking using active contour and color classification models. In: ISM. 2010. pp. 73–80.

  62. Collins RT, Lipton AJ, Kanade T, Fujiyoshi H, Duggins D, Tsin Y, Tolliver D, Enomoto N, Hasegawa O, Burt P, et al. A system for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12, Pittsburg: Carnegie Mellon University; 2000.

  63. Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans PAMI. 2003;25(5):564–77.

    Article  Google Scholar 

  64. Cong Y, Yuan J, Tang Y. Object tracking via online metric learning. In: ICIP. 2012. pp. 417–420.

  65. Cremers D. Dynamical statistical shape priors for level set-based tracking. IEEE Trans PAMI. 2006;28(8):1262–73.

    Article  Google Scholar 

  66. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: CVPR, vol. 1. 2005. pp. 886–893.

  67. Dan Z, Sang N, Huang R, Sun S. Instance transfer boosting for object tracking. Optik-Int J Light Electron Opt. 2013;124(18):3446–50.

    Article  Google Scholar 

  68. Deng P, Zhou L, Wang B. Visual tracking based on local patches and ferns forest. In: ICSP. 2014. pp. 760–763.

  69. Devi RB, Chanu YJ, Singh KM. Discriminative object tracking with subspace representation. Vis Comput. 2021;37:1207–19.

    Article  Google Scholar 

  70. Diwakar M, Patel PK, Gupta K, Chauhan C. Object tracking using joint enhanced color-texture histogram. In: ICIIP. 2013. pp. 160–165.

  71. Donoser M, Bischof H. Efficient Maximally Stable Extremal Region (MSER) tracking. In: CVPR, vol. 1. 2006. pp. 553–560.

  72. Dou J, Qin Q, Tu Z. Improved weighted multiple instance learning for object tracking. Optik-Int J Light Electron Opt. 2015;126(24):5287–93.

    Article  Google Scholar 

  73. Freund Y, Schapire R, Abe N. A short introduction to boosting. J-Jpn Soc Artif Intell. 1999;14(5):771–80.

    Google Scholar 

  74. Gall J, Razavi N, Van Gool L. On-line adaption of class-specific codebooks for instance tracking. In: BMVC. 2010. pp. 1–12.

  75. Gall J, Yao A, Razavi N, Van GL, Lempitsky V. Hough forests for object detection, tracking, and action recognition. IEEE Trans PAMI. 2011;33(11):2188–202.

    Article  Google Scholar 

  76. Gao C, Chen F, Yu JG, Huang R, Sang N. Exemplar-based linear discriminant analysis for robust object tracking. In: ICIP. 2014. pp. 388–392.

  77. Gao C, Sang N, Huang R. Online transfer boosting for object tracking. In: ICPR. 2012. pp. 906–909.

  78. Gao J, Ling H, Hu W, Xing J. Transfer learning based visual tracking with Gaussian processes regression. In: ECCV. 2014. pp. 188–203.

  79. Ge SS, Yang Y, Lee TH. Hand gesture recognition and tracking based on distributed locally linear embedding. Image Vis Comput. 2008;26(12):1607–20.

    Article  Google Scholar 

  80. Gelzinis A, Verikas A, Bacauskiene M. Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recogn. 2007;40(9):2367–72.

    Article  MATH  Google Scholar 

  81. Geng W, Cosman P, Berry CC, Feng Z, Schafer WR. Automatic tracking, feature extraction and classification of \(C. elegans\) phenotypes. IEEE Trans Biomed Eng. 2004;51(10):1811–20.

    Article  Google Scholar 

  82. Georgescu B, Meer P. Point matching under large image deformations and illumination changes. IEEE Trans PAMI. 2004;26(6):674–88.

    Article  Google Scholar 

  83. Giebel J, Gavrila DM, Schnörr C. A Bayesian framework for multi-cue 3D object tracking. In: ECCV. 2004. pp. 241–252.

  84. Godec M, Leistner C, Saffari A, Bischof H. On-line random Naive Bayes for tracking. In: ICPR. 2010. pp. 3545–3548.

  85. Grabner H, Bischof H. On-line boosting and vision. In: CVPR, vol. 1. 2006. pp. 260–267.

  86. Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: BMVC. 2006. pp. 1–10.

  87. Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: ECCV. 2008. pp. 234–247.

  88. Grabner M, Grabner H, Bischof H. Learning features for tracking. In: CVPR. 2007. pp. 1–8.

  89. Ha SW, Moon YH. Multiple object tracking using SIFT features and location matching. Int J Smart Home. 2011;5(4):17–26.

    Google Scholar 

  90. Han Z, Jiao J, Zhang B, Ye Q, Liu J. Visual object tracking via sample-based adaptive sparse representation (AdaSR). Pattern Recogn. 2011;44(9):2170–83.

    Article  Google Scholar 

  91. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans SMC. 1973;3(6):610–21.

    Google Scholar 

  92. Hare S, Saffari A, Torr PH: Struck: Structured output tracking with kernels. In: ICCV. 2011. pp. 263–270.

  93. Haritaoglu I, Flickner M. Detection and tracking of shopping groups in stores. In: CVPR, vol. 1. 2001. pp. 431–438.

  94. Haritaoglu I, Harwood D, Davis LS. W4: real-time surveillance of people and their activities. IEEE Trans PAMI. 2000;22(8):809–30.

    Article  Google Scholar 

  95. Harris CG, Stephens M, et al. A combined corner and edge detector. In: Alvey vision conference. 1988. pp. 10–5244.

  96. Hashemzadeh M, Pan G, Yao M. Counting moving people in crowds using motion statistics of feature-points. Multimed Tools Appl. 2014;72(1):453–87.

    Article  Google Scholar 

  97. He C, Zheng YF, Ahalt SC. Object tracking using the Gabor wavelet transform and the golden section algorithm. IEEE Trans Multimedia. 2002;4(4):528–38.

    Article  Google Scholar 

  98. He W, Yamashita T, Lu H, Lao S. SURF tracking. In: ICCV. 2009. pp. 1586–1592.

  99. Henriques JF, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Trans PAMI. 2015;37(3):583–96.

    Article  Google Scholar 

  100. Ho J, Lee KC, Yang MH, Kriegman D. Visual tracking using learned linear subspaces. In: CVPR, vol. 1. 2004. pp. 782–789.

  101. Hong S, You T, Kwak S, Han B. Online tracking by learning discriminative saliency map with convolutional neural network. arXiv preprint arXiv:1502.06796. 2015. pp. 1–10.

  102. Hong X, Chang H, Shan S, Zhong B, Chen X, Gao W. Sigma set based implicit online learning for object tracking. IEEE Signal Process Lett. 2010;17(9):807–10.

    Article  Google Scholar 

  103. Howe NR. Silhouette lookup for automatic pose tracking. In: CVPRW. 2004. pp. 15–22.

  104. Hu W, Li X, Luo W, Zhang X, Maybank S, Zhang Z. Single and multiple object tracking using log-Euclidean Riemannian subspace and block-division appearance model. IEEE Trans PAMI. 2012;34(12):2420–40.

    Article  Google Scholar 

  105. Hu W, Li X, Zhang X, Shi X, Maybank S, Zhang Z. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int J Comput Vis. 2011;91(3):303–27.

    Article  MATH  Google Scholar 

  106. Huang B, Xu T, Li J, Shen Z, Chen Y. Transfer learning-based discriminative correlation filter for visual tracking. Pattern Recogn. 2020;100.

  107. Jiang N, Liu W, Su H, Wu Y. Tracking low resolution objects by metric preservation. In: CVPR. 2011. pp. 107157–107172.

  108. Jiang N, Liu W, Wu Y. Order determination and sparsity-regularized metric learning adaptive visual tracking. In: CVPR. 2012. pp. 1956–1963.

  109. Kamijo S, Matsushita Y, Ikeuchi K, Sakauchi M. Traffic monitoring and accident detection at intersections. IEEE Trans ITS. 2000;1(2):108–18.

    Google Scholar 

  110. Kar A. Skeletal tracking using Microsoft kinect. Methodology. 2010;1:1–11.

    Google Scholar 

  111. Kasturi R, Goldgof D, Soundararajan P, Manohar V, Garofolo J, Bowers R, Boonstra M, Korzhova V, Zhang J. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics and protocol. IEEE Trans PAMI. 2009;31(2):319–36.

    Article  Google Scholar 

  112. Khare A, Tiwary US. Daubechies complex wavelet transform based moving object tracking. In: CIISP. 2007. pp. 36–40.

  113. Kim DH, Kim HK, Ko SJ, et al. Spatial color histogram based center voting method for subsequent object tracking and segmentation. Image Vis Comput. 2011;29(12):850–60.

    Article  Google Scholar 

  114. Kim Z. Real time object tracking based on dynamic feature grouping with background subtraction. In: CVPR. 2008. pp. 1–8.

  115. Klein D. Bobot—bonn benchmark on tracking. Tech. rep. 2010. http://www.iai.uni-bonn.de/~kleind/tracking/index.htm.

  116. Kochavi E, Goldsher D, Azhari H. Method for rapid MRI needle tracking. Magn Reson Med. 2004;51(5):1083–7.

    Article  Google Scholar 

  117. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Cehovin Zajc L, Vojir T, Hager G, Lukezic A, Eldesokey A, Fernandez G. The visual object tracking VOT2017 challenge results. In: TCCVW; 2017.

  118. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Čehovin L, Vojír T, Häger G, Lukežič A, Fernandez Dominguez G, Gupta A, Petrosino A, Memarmoghadam A, Garcia-Martin A, Solís Montero A, Vedaldi A, Robinson A, Ma A, Varfolomieiev A, Chi Z. The visual object tracking VOT2016 challenge results. 2016. pp. 777–823.

  119. Kristan M, Leonardis A, Matas J, Felsberg M, Pfugfelder R, Čehovin Zajc L, Vojir T, Bhat G, Lukezic A, Eldesokey A, Fernandez G, et al. The sixth visual object tracking VOT2018 challenge results. In: ECCVW; 2018.

  120. Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojir T, Häger G, Nebehay G, Pflugfelder R. The visual object tracking VOT2015 challenge results. In: Workshop on the VOT2015 Visual Object Tracking Challenge; 2015.

  121. Kristan M, Matas J, Leonardis A, Felsberg M, Pflugfelder R, Kamarainen JK, Čehovin Zajc L, Drbohlav O, Lukezic A, Berg A, Eldesokey A, Kapyla J, Fernandez G. The seventh visual object tracking VOT2019 challenge results. In: ICCVW; 2019.

  122. Kristan M, Pflugfelder R, Leonardis A, Matas J, Cehovin L, Nebehay G, Vojir T, Fernandez G, Lukezic A, Dimitriev A, Petrosino A, Saffari A, Li B, Han B, Heng C, Garcia C, Pangersic D, Hager G, Khan FS, Oven F, Possegger H, Bischof H, Nam H, Zhu J, Li J, Choi JY, Choi JW, Henriques JF, van de Weijer J, Batista J, Lebeda K, Ofjall K, Yi KM, Qin L, Wen L, Maresca ME, Danelljan M, Felsberg M, Cheng MM, Torr P, Huang Q, Bowden R, Hare S, Lim SY, Hong S, Liao S, Hadfield S, Li SZ, Duffner S, Golodetz S, Mauthner T, Vineet V, Lin W, Li Y, Qi Y, Lei Z, Niu Z. The visual object tracking VOT2014 challenge results. In: ECCV. 2014. pp. 191–217.

  123. Kristan M, Pflugfelder R, Leonardis A, Matas J, Porikli F, Cehovin L, Nebehay G, Fernandez G, Vojir T, Gatt A, et al. The visual object tracking vot2013 challenge results. In: ICCVW. 2013. pp. 98–111.

  124. Lai DX, Chang YH, Zhong ZH. Active contour tracking of moving objects using edge flows and Ant colony optimization in video sequences. In: Advances in Image and Video Technology. 2009. pp. 1104–1116.

  125. Leistner C, Saffari A, Bischof H. MIForests: Multiple-instance learning with randomized trees. In: ECCV. 2010. pp. 29–42.

  126. Leistner C, Saffari A, Roth PM, Bischof H. On robustness of on-line boosting-A competitive study. In: ICCVW. 2009. pp. 1362–1369.

  127. Lenser S, Veloso M. Visual sonar: Fast obstacle avoidance using monocular vision. In: IROS, vol. 1. 2003. pp. 886–891.

  128. Lepetit V, Fua P. Keypoint recognition using randomized trees. IEEE Trans PAMI. 2006;28(9):1465–79.

    Article  Google Scholar 

  129. Lepetit V, Lagger P, Fua P. Randomized trees for real-time keypoint recognition. In: CVPR, vol. 2. 2005. pp. 775–781.

  130. Li F, Kim T, Humayun A, Tsai D, Rehg J. Video segmentation by tracking many figure-ground segments. In: ICCV. 2013. pp. 2192–2199.

  131. Li G, Huang Q, Qin L, Jiang S. SSOCBT: a robust semi-supervised online CovBoost tracker that uses samples differently. IEEE Trans CSVT. 2013;23(4):695–709.

    Google Scholar 

  132. Li G, Liang D, Huang Q, Jiang S, Gao W. Object tracking using incremental 2D-LDA learning and Bayes inference. In: ICIP. 2008. pp. 1568–1571.

  133. Li K, He F, Yu H, Chen X. A parallel and robust object tracking approach synthesizing adaptive bayesian learning and improved incremental subspace learning. Front Comput Sci. 2019;13(5):1116–35.

    Article  Google Scholar 

  134. Li M, Kwok JT, Lu BL. Online multiple instance learning with no regret. In: CVPR. 2010. pp. 1395–1401.

  135. Li M, Zhang Z, Huang K, Tan T. Robust visual tracking based on simplified biologically inspired features. In: ICIP. 2009. pp. 4113–4116.

  136. Li N, Liu L, Xu D. Corner feature based object tracking using adaptive Kalman filter. In: ICSP. 2008. pp. 1432–1435.

  137. Li S, Lee MC. Fast visual tracking using motion saliency in video. In: ICASSP, vol. 1. 2007. pp. 1073–1076.

  138. Li X, Dick A, Shen C, Van DHA, Wang H. Incremental learning of 3D-DCT compact representations for robust visual tracking. IEEE Trans PAMI. 2013;35(4):863–81.

    Article  Google Scholar 

  139. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD. A survey of appearance models in visual object tracking. ACM TIST. 2013;4(4):1–58.

    Article  Google Scholar 

  140. Li X, Hu W, Zhang Z, Zhang X, Luo G. Robust visual tracking based on incremental tensor subspace learning. In: ICCV. 2007. pp. 1–8.

  141. Li X, Hu W, Zhang Z, Zhang X, Zhu M, Cheng J. Visual tracking via incremental log-Euclidean Riemannian subspace learning. In: CVPR. 2008. pp. 1–8.

  142. Li Y. On incremental and robust subspace learning. Pattern Recogn. 2004;37(7):1509–18.

    Article  MATH  Google Scholar 

  143. Lin RS, Yang MH, Levinson SE. Object tracking using incremental Fisher discriminant analysis. In: ICPR, vol. 2. 2004. pp. 757–760.

  144. Lin Z, Davis LS, Doermann D, DeMenthon D. Hierarchical part-template matching for human detection and segmentation. In: ICCV. 2007. pp. 1–8.

  145. Liu R, Cheng J, Lu H. A robust boosting tracker with minimum error bound in a co-training framework. In: ICCV. 2009. pp. 1459–1466.

  146. Liu X, Yu T. Gradient feature selection for online boosting. In: ICCV. 2007. pp. 1–8.

  147. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.

    Article  Google Scholar 

  148. Lu Y, Liu J, Liu W, Ma S, Xiu X, Liu W, Chen H. Detecting moving objects from dynamic background combining subspace learning with mixed norm approach. Multimedia Tools Appl. 2020;79.

  149. Lucas BD, Kanade T, et al. An iterative image registration technique with an application to stereo vision. In: IJCAI. 1981. pp. 18747–18766.

  150. Luo W, Li X, Li W, Hu W. Robust visual tracking via transfer learning. In: ICIP. 2011. pp. 485–488.

  151. Ma G, Chen C, Li S, Peng C, Hao A, Qin H. Salient object detection via multiple instance joint re-learning. IEEE Trans Multimedia. 2019;22(2):324–36.

    Article  Google Scholar 

  152. Machiraju GSR, Kumari K, Sharif SK. Object detection and tracking for community surveillance using transfer learning. In: International Conference on Inventive Computation Technologies (ICICT). 2021. pp. 1035–1042.

  153. Maggio E, Cavallaro A. Video tracking: theory and practice. 1st ed. Hoboken: Wiley; 2011.

    Book  MATH  Google Scholar 

  154. Mahadevan V, Vasconcelos N. Biologically inspired object tracking using center-surround saliency mechanisms. IEEE Trans PAMI. 2013;35(3):541–54.

    Article  Google Scholar 

  155. Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans PAMI. 2011;33(11):2259–72.

    Article  Google Scholar 

  156. Mojaev A, Zell A. Image decomposition and tracking with Gabor wavelets. Mach Intell Robot Control. 2003;1(1):3–9.

    Google Scholar 

  157. Mondal A. Neuro-probabilistic model for object tracking. Pattern Anal Appl. 2019; 1–20.

  158. Mondal A, Ghosh A, Ghosh S. Neural approach for object tracking in complex environment. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2016. 22:1–6.

  159. Mondal A, Ghosh A, Ghosh S. Prototypes based discriminative appearance model for object tracking. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP). 2016. pp. 2:1–2:8.

  160. Mondal A, Ghosh A, Ghosh S. Scaled and oriented object tracking using ensemble of multilayer perceptrons. Appl Soft Comput. 2018;73:1081–94.

    Article  Google Scholar 

  161. Mondal A, Ghosh S, Ghosh A. Efficient silhouette-based contour tracking using local information. Soft Comput. 2016;20(2):785–805.

    Article  Google Scholar 

  162. Mondal A, Ghosh S, Ghosh A. Partially camouflaged object tracking using modified probabilistic neural network and fuzzy energy based active contour. Int J Comput Vis. 2017;122(1):116–48.

    Article  MathSciNet  Google Scholar 

  163. Mountney P, Yang GZ. Soft tissue tracking for minimally invasive surgery: Learning local deformation online. In: MICCAI. 2008. pp. 364–372.

  164. Mussi L, Ivekovic S, Cagnoni S. Markerless articulated human body tracking from multi-view video with GPU-PSO. In: Evolvable Systems: from Biology to Hardware. 2010. pp. 97–108.

  165. Nebehay G, Pflugfelder R. TLM: tracking-learning-matching of keypoints. In: ICDSC. 2013. pp. 1–6.

  166. Nejhum SS, Ho J, Yang MH. Online visual tracking with histograms and articulating blocks. Comput Vis Image Underst. 2010;114(8):901–14.

    Article  Google Scholar 

  167. Nguyen HT, Smeulders A. Tracking aspects of the foreground against the background. In: ECCV. 2004. pp. 446–456.

  168. Nguyen HT, Smeulders AW. Fast occluded object tracking by a robust appearance filter. IEEE Trans PAMI. 2004;26(8):1099–104.

    Article  Google Scholar 

  169. Ning J, Zhang L, Zhang D, Wu C. Robust object tracking using joint color-texture histogram. Int J Pattern Recogn Artif Intell. 2009;23(7):1245–63.

    Article  Google Scholar 

  170. Oikonomidis I, Kyriazis N, Argyros AA. Tracking the articulated motion of two strongly interacting hands. In: CVPR. 2012. pp. 1862–1869.

  171. Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans PAMI. 2002;24(7):971–87.

    Article  MATH  Google Scholar 

  172. Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. IJCV. 2015;111(2):213–28.

    Article  MathSciNet  MATH  Google Scholar 

  173. Özuysal M, Calonder M, Lepetit V, Fua P. Fast keypoint recognition using random ferns. IEEE Trans PAMI. 2010;32(3):448–61.

    Article  Google Scholar 

  174. Palmer SE. Vision science: photons to phenomenology. 1st ed. London: MIT Press; 1999.

    Google Scholar 

  175. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.

    Article  Google Scholar 

  176. Parag T, Porikli F, Elgammal A. Boosting adaptive linear weak classifiers for online learning and tracking. In: CVPR. 2008. pp. 1–8.

  177. Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans PAMI. 2000;22(3):266–80.

    Article  Google Scholar 

  178. Park Y, Lepetit V, Woo W. Multiple 3D object tracking for augmented reality. In: Proceedings of IEEE/ACM International Symposium on Mixed and Augmented Reality. 2008. pp. 117–120.

  179. Paschalakis S, Bober M. Real-time face detection and tracking for mobile videoconferencing. Real-Time Imaging. 2004;10(2):81–94.

    Article  Google Scholar 

  180. Pernici F, Del BA. Object tracking by oversampling local features. IEEE Trans PAMI. 2014;36(12):2538–51.

    Article  Google Scholar 

  181. Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on Lie Algebra. In: CVPR, vol. 1. 2006. pp. 728–735.

  182. Prakash O, Khare A. Tracking of non-rigid object in complex wavelet domain. J Signal Inf Process. 2011;2(2):105–11.

    MathSciNet  Google Scholar 

  183. Quinn JA, Nakibuule R. Traffic flow monitoring in crowded cities. In: AAAI Spring Symposium: Artificial Intelligence for Development. 2010. pp. 73–78. AAAI.

  184. Rao C, Yao C, Bai X, Qiu W, Liu W. Online random ferns for robust visual tracking. In: ICPR. 2012. pp. 1447–1450.

  185. Rémi T, Bernard M. Probabilistic matching algorithm for keypoint based object tracking using a delaunay triangulation. In: WIAMIS. 2007. pp. 1–17.

  186. Ren T, Qiu Z, Liu Y, Yu T, Bei J. Soft-assigned bag of features for object tracking. Multimedia Syst. 2015;21(2):189–205.

    Article  Google Scholar 

  187. Ren X, Malik J. Tracking as repeated figure/ground segmentation. In: CVPR. 2007. pp. 1–8.

  188. Rosenhahn B, Kersting U, Andrew S, Brox T, Klette R, Seidel HP. A silhouette based human motion tracking system. Tectnical Report 1530, CITR, University of Auckland, New Zealand; 2005.

  189. Ross DA, Lim J, Lin RS, Yang MH. Incremental learning for robust visual tracking. Int J Comput Vis. 2008;77(13):125–41.

    Article  Google Scholar 

  190. Ruitao L, Xin J, Xiaogang Y, Jiwei F, Lu C, Dalei L. Robust object tracking via graph-based transductive learning with subspace representation. In: Chinese Automation Congress (CAC). 2020. pp. 4852–4856.

  191. Saffari A, Leistner C, Santner J, Godec M, Bischof H. On-line random forests. In: ICCVW. 2009. pp. 1393–1400.

  192. Sahouria E, Zakhor A. A trajectory based video indexing system for street surveillance. In: ICIP. 1999. pp. 24–28.

  193. Sand P, Teller S. Particle video: long-range motion estimation using point trajectories. IJCV. 2008;80(1):72–91.

    Article  Google Scholar 

  194. Santner J, Leistner C, Saffari A, Pock T, Bischof H. PROST: parallel robust online simple tracking. In: CVPR. 2010. pp. 723–730.

  195. Schwarz LA, Mkhitaryan A, Mateus D, Navab N. Human skeleton tracking from depth data using geodesic distances and optical flow. Image Vis Comput. 2012;30(3):217–26.

    Article  Google Scholar 

  196. Shi J, Tomasi C. Good features to track. In: CVPR. 1994. pp. 593–600.

  197. Shi X, Zhang X, Liu Y, Hu W, Ling H. Multi-cue based multi-target tracking using online random forests. In: ICASSP. 2011. pp. 1185–1188.

  198. Shotton J, Johnson M, Cipolla R. Semantic texton forests for image categorization and segmentation. In: CVPR. 2008. pp. 1–8.

  199. Shuo H, Na W, Huajun S. Object tracking method based on SURF. AASRI Procedia. 2012;3:351–6.

    Article  Google Scholar 

  200. Sidibé D, Fofi D, Mériaudeau F. Using visual saliency for object tracking with particle filters. In: ECSP. 2010. pp. 1776–1780.

  201. Silveira G, Malis E. Real-time visual tracking under arbitrary illumination changes. In: CVPR, vol. 1. 2007. pp. 1–6.

  202. Sivic J, Schaffalitzky F, Zisserman A. Object level grouping for video shots. In: ECCV. 2004. pp. 85–98.

  203. Sivic J, Schaffalitzky F, Zisserman A. Object level grouping for video shots. Int J Comput Vis. 2006;67(2):189–210.

    Article  MATH  Google Scholar 

  204. Smeulders AW, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual tracking: an experimental survey. IEEE Trans PAMI. 2014;36(7):1442–68.

    Article  Google Scholar 

  205. Song C, Zhao H, Jing W, Bi Y. Robust video stabilization based on bounded path planning. In: ICPR. 2012. pp. 3684–3687.

  206. Sui Y, Tang Y, Zhang L, Wang G. Visual tracking via subspace learning: a discriminative approach. Int J Comput Vis. 2018;126(5):515–36.

    Article  MathSciNet  MATH  Google Scholar 

  207. Sun X, Yao H, Zhang S. A novel supervised level set method for non-rigid object tracking. In: CVPR. 2011. pp. 3393–3400.

  208. Sundaresan A, Chellappa R. Multicamera tracking of articulated human motion using shape and motion cues. IEEE Trans IP. 2009;18(9):2114–26.

    MathSciNet  MATH  Google Scholar 

  209. Ta DN, Chen WC, Gelfand N, Pulli K. SURFTrac: efficient tracking and continuous object recognition using local feature descriptors. In: CVPR. 2009. pp. 2937–2944.

  210. Tai JC, Tseng ST, Lin CP, Song KT. Real-time image tracking for automatic traffic monitoring and enforcement applications. Image Vis Comput. 2004;22(6):485–501.

    Article  Google Scholar 

  211. Takala V, Pietikainen M. Multi-object tracking using color, texture and motion. In: CVPR. 2007. pp. 1–7.

  212. Tan X, Triggs B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans IP. 2010;19(6):1635–50.

    MathSciNet  MATH  Google Scholar 

  213. Tang F, Tao H. Probabilistic object tracking with dynamic attributed relational feature graph. IEEE Trans CSVT. 2008;18(8):1064–74.

    Google Scholar 

  214. Tissainayagam P, Suter D. Object tracking in image sequences using point features. Pattern Recogn. 2005;38(1):105–13.

    Article  Google Scholar 

  215. Tran S, Davis L. Robust object trackinng with regional affine invariant features. In: ICCV. 2007. pp. 1–8.

  216. Tran TTH, Marchand E. Real-time keypoints matching: application to visual servoing. In: ICRA. 2007. pp. 3787–3792.

  217. Tuzel O, Porikli F, Meer P. Region covariance: A fast descriptor for detection and classification. In: ECCV. 2006. pp. 589–600.

  218. Vacchetti L, Lepetit V, Fua P. Stable real-time 3D tracking using online and offline information. IEEE Trans PAMI. 2004;26(10):1385–91.

    Article  Google Scholar 

  219. Vaswani N, Bouwmans T, Javed S, Narayanamurthy P. Robust subspace learning: robust pca, robust subspace tracking, and robust subspace recovery. IEEE Signal Process Mag. 2018;35(4):32–55.

    Article  Google Scholar 

  220. Vaswani N, Rathi Y, Yezzi A, Tannenbaum A. PF-MT with an interpolation effective basis for tracking local contour deformations. IEEE Trans IP. 2008;19(4):841–57.

    MATH  Google Scholar 

  221. Veenman CJ, Reinders MJ, Backer E. Resolving motion correspondence for densely moving points. IEEE Trans PAMI. 2001;23(1):54–72.

    Article  Google Scholar 

  222. Veeraraghavan A, Chellappa R, Srinivasan M. Shape-and-behavior encoded tracking of Bee dances. IEEE Trans PAMI. 2008;30(3):463–76.

    Article  Google Scholar 

  223. Venkatesh BR, Makur A. Kernel-based spatial-color modeling for fast moving object tracking. In: ICASSP, vol. 1. 2007. pp. 901–904.

  224. Visentini I, Snidaro L, Foresti GL. Dynamic ensemble for target tracking. In: International Workshop on Visual Surveillance. 2008. pp. 1–8.

  225. Wang J, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Trans IP. 2008;17(2):235–40.

    Google Scholar 

  226. Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recogn. 2003;36(3):585–601.

    Article  Google Scholar 

  227. Wang LJ, Zhang H. Visual tracking based on an improved online multiple instance learning algorithm. Comput Intell Neurosci. 2015;2016:1–9.

    Google Scholar 

  228. Wang N, Li S, Gupta A, Yeung DY. Transferring rich feature hierarchies for robust visual tracking. 2015. pp. 1–9.

  229. Wang Q, Chen F, Xu W, Yang MH. Online discriminative object tracking with local sparse representation. In: WACV. 2012. pp. 425–432.

  230. Wang Q, Chen F, Yang J, Xu W, Yang MH. Transferring visual prior for online object tracking. IEEE Trans IP. 2012;21(7):3296–305.

    MathSciNet  MATH  Google Scholar 

  231. Wang S, Lu H, Yang F, Yang MH. Superpixel tracking. In: ICCV. 2011. pp. 1323–1330.

  232. Wang T, Gu IY, Shi P. Object tracking using incremental 2D-PCA learning and ML estimation. In: ICASSP, vol. 1. 2007. pp. 933–936.

  233. Wang W, Nevatia R. Robust object tracking using constellation model with superpixel. In: ACCV. 2012. pp. 191–204.

  234. Wang X, Hua G, Han TX. Discriminative tracking by metric learning. In: ECCV. 2010. pp. 200–214.

  235. Wen J, Gao X, Yuan Y, Tao D, Li J. Incremental tensor biased discriminant analysis: a new color-based visual tracking method. Neurocomputing. 2010;73(4):827–39.

    Article  Google Scholar 

  236. Wen J, Li X, Gao X, Tao D. Incremental learning of weighted tensor subspace for visual tracking. In: ICSMC. 2009. pp. 3688–3693.

  237. Werlberger M, Trobin W, Pock T, Wedel A, Cremers D, Bischof H. Anisotropic Huber-L1 optical flow. In: BMVC. 2009. pp. 1–11.

  238. Wolfe JM. Guided search 2.0 A revised model of visual search. Psychonomic Bull Rev. 1994;1(2):202–38.

    Article  Google Scholar 

  239. Wu Y, Cheng J, Wang J, Lu H. Real-time visual tracking via incremental covariance tensor learning. In: CVPR. 2009. pp. 1631–1638.

  240. Wu Y, Cheng J, Wang J, Lu H, Wang J, Ling H, Blasch E, Bai L. Real-time probabilistic covariance tracking with efficient model update. IEEE Trans IP. 2012;21(5):2824–37.

    MathSciNet  MATH  Google Scholar 

  241. Wu Y, Fan J. Contextual flow. In: CVPR. 2009. pp. 33–40.

  242. Wu Y, Lim J, Yang MH. Online object tracking: a benchmark. In: CVPR. 2013. pp. 2411–2418.

  243. Wu Y, Lim J, Yang MH. Object tracking benchmark. IEEE Trans PAMI. 2015;37(9):1834–48.

    Article  Google Scholar 

  244. Xu C, Tao W, Meng Z, Feng Z. Robust visual tracking via online multiple instance learning with Fisher information. Pattern Recogn. 2015;48(12):3917–26.

    Article  Google Scholar 

  245. Xu Z, Shi P, Xu X. Adaptive subclass discriminant analysis color space learning for visual tracking. In: Pacific-Rim Conference on Multimedia. 2008. pp. 902–905.

  246. Yan Y, Wang J, Li C, Wu Z. Object tracking using SIFT features in a particle filter. In: ICCSN. 2011. pp. 384–388.

  247. Yang C, Duraiswami R, Davis L. Efficient mean-shift tracking via a new similarity measure. In: CVPR, vol. 1. 2005. pp. 176–183.

  248. Yang F, Lu H, Chen YW. Bag of features tracking. In: ICPR. 2010. pp. 153–156.

  249. Yang F, Lu H, Yang MH. Learning structured visual dictionary for object tracking. Image Vis Comput. 2013;31(12):992–9.

    Article  Google Scholar 

  250. Yang F, Lu H, Yang MH. Robust superpixel tracking. IEEE Trans IP. 2014;23(4):1639–51.

    MathSciNet  MATH  Google Scholar 

  251. Yang F, Lu HH, Zhang W, Yang GM. Visual tracking via bag of features. IET Image Proc. 2012;6(2):115–28.

    Article  MathSciNet  Google Scholar 

  252. Yang G, Hu Z, Tang J. Robust visual tracking via incremental subspace learning and local sparse representation. Arab J Sci Eng. 2018;43(2):627–36.

    Article  Google Scholar 

  253. Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A. Robust tracking with weighted online structured learning. In: ECCV. 2012. pp. 158–172.

  254. Yao R, Shi Q, Shen C, Zhang Y, Hengel A. Part-based visual tracking with online latent structural learning. In: CVPR. 2013. pp. 2363–2370.

  255. Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Comput Surv. 2006;38(4):1–45.

    Article  Google Scholar 

  256. Yilmaz A, Li X, Shah M. Object contour tracking using level sets. In: ACCV, vol. 1. 2004. pp. 1–7.

  257. Yin Z, Collins RT. Shape constrained figure-ground segmentation and tracking. In: CVPR. 2009. pp. 731–738.

  258. Yokoyama M, Poggio T. A contour-based moving object detection and tracking. In: WVSPETS. 2005. pp. 271–276.

  259. Yu L, Zhang X, Zheng L. A new object tracking algorithm based on the fast discrete curvelet transform. Int J Signal Process Image Process Pattern Recogn. 2014;7(1):53–64.

    Google Scholar 

  260. Yuan X, Li D, Mohapatra D, Elhoseny M. Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding. Comput Elect Eng. 2018;70:813–25.

    Article  Google Scholar 

  261. Yuk JS, Wong KYK, Chung RH, Chow K, Chin FY, Tsang KS. Object-based surveillance video retrieval system with real-time indexing methodology. In: Image Analysis and Recognition. 2007. pp. 626–637.

  262. Zeisl B, Leistner C, Saffari A, Bischof H. On-line semi-supervised multiple-instance boosting. In: CVPR. 2010. pp. 1879–1879.

  263. Zhang D, Li W, Sun M, Yu H. Saliency map for object tracking. Int J Signal Process Image Process Pattern Recogn. 2015;8(10):233–40.

    Google Scholar 

  264. Zhang G, Yuan Z, Zheng N, Sheng X, Liu T. Visual saliency based object tracking. In: ACCV. 2009. pp. 193–203.

  265. Zhang J, Fang J, Lu J. Mean-shift algorithm integrating with SURF for tracking. In: ICNC, vol. 2. 2011. pp. 960–963.

  266. Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 2013;46(1):397–411.

    Article  MATH  Google Scholar 

  267. Zhang L, Varadarajan J, Nagaratnam Suganthan P, Ahuja N, Moulin P. Robust visual tracking using oblique random forests. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

  268. Zhang S, Stentiford F. A saliency based object tracking method. In: CBMI. 2008. pp. 512–517.

  269. Zhang T, Ghanem B, Liu S, Ahuja N. Low-rank sparse learning for robust visual tracking. In: ECCV. 2012. pp. 470–484.

  270. Zhang T, Ghanem B, Liu S, Ahuja N. Robust visual tracking via structured multi-task sparse learning. IJCV. 2013;101(2):367–83.

    Article  MathSciNet  Google Scholar 

  271. Zhao Q, Yang Z, Tao H. Differential Earth Mover’s distance with its applications to visual tracking. IEEE Trans PAMI. 2010;32(2):274–87.

    Article  Google Scholar 

  272. Zhong Q, Qingqing Z, Tengfei G. Moving object tracking based on codebook and particle filter. Procedia Eng. 2012;29:174–8.

    Article  Google Scholar 

  273. Zhong W, Lu H, Yang MH. Robust object tracking via sparsity-based collaborative model. In: CVPR. 2012. pp. 1838–1845.

  274. Zhou H, Yuan Y, Shi C. Object tracking using SIFT features and mean shift. Comput Vis Image Underst. 2009;113(3):345–52.

    Article  Google Scholar 

  275. Zhou Z, Ou X, Xu J. SURF feature detection method used in object tracking. In: ICMLC, vol. 4. 2013. pp. 1865–1868.

  276. Zhu X. Semi-supervised learning literature survey. Tectnical Report 1530, Madison: University of Wisconsin; 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy Mondal.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Ethical Approval

This article does no contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A. Supervised Machine Learning Approaches for Moving Object Tracking: A Survey. SN COMPUT. SCI. 3, 146 (2022). https://doi.org/10.1007/s42979-022-01040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01040-0

Keywords