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Abstract
The objective of this research is to investigate the feasibility of applying behavioral predictive analytics to optimize patient 
engagement in diabetes self-management, and to gain insights on the potential of infusing a chatbot with NLP technology 
for discovering health-related social needs. In the U.S., less than 25% of patients actively engage in self-health manage-
ment, even though self-health management has been reported to associate with improved health outcomes and reduced 
healthcare costs. The proposed behavioral predictive analytics relies on manifold clustering to identify subpopulations seg-
mented by behavior readiness characteristics that exhibit non-linear properties. For each subpopulation, an individualized 
auto-regression model and a population-based model were developed to support self-management personalization in three 
areas: glucose self-monitoring, diet management, and exercise. The goal is to predict personalized activities that are most 
likely to achieve optimal engagement. In addition to actionable self-health management, this research also investigates the 
feasibility of detecting health-related social needs through unstructured conversational dialog. This paper reports the result 
of manifold clusters based on 148 subjects with type 2 diabetes and shows the preliminary result of personalization for 22 
subjects under different scenarios, and the preliminary results on applying Latent Dirichlet Allocation to the conversational 
dialog of ten subjects for discovering social needs in five areas: food security, health (insurance coverage), transportation, 
employment, and housing.
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Introduction

(Pre-)diabetes is a chronic disease that affects over 115 mil-
lion Americans and over 440 million people worldwide. In 
the U.S., diabetes affects disproportionally among racial 
and ethnic minority and low-income populations. Due to 
the health disparity characterized by the Social Determinants 
of Health (SDoH), personalized intervention and engaging 
individuals in self-health management are healthcare strat-
egies being actively discussed for achieving health equity 
(Haire-Joshu 2019).

Some of the risk factors of diabetes are mitigatable 
through behavior change towards a healthy lifestyle. It has 
been demonstrated elsewhere (Bollyky 2018) that behavior 
change can achieve a 10% or more improvement in diabe-
tes symptoms if an individual is engaged in proactive self-
management of diabetes.

Self-management is generally accepted as a viable inter-
vention strategy (Hadjiconstantinou 2020). Self-manage-
ment is the patient’s ability to manage their chronic disease 
through their own activities, such as taking their blood 
glucose readings and focusing on meeting diet and activity 
goals. However, we do not fully understand the relation-
ship between the behavior readiness of an individual and 
the specific intervention strategy that could deliver opti-
mal patient engagement in self-management activities. As 
evidenced in a survey conducted elsewhere (Volpp 2016), 
less than 25% of patients are considered actively engaged 
in self-health management. Population health management 
will not be cost-effective if self-management programs do 
not consider the readiness of the patient population. A con-
tribution of this research is to provide an insight into the 
technical feasibility of (1) behavioral predictive analytics, 
and (2) NLP technology for eliciting Social Determinants 
of Health (SDoH). The main goal is to optimize the effec-
tiveness of self-management strategies using personalization 
based on predicting behavior readiness and its relationship 
to engagement outcomes. A second goal is to determine the 
feasibility of NLP technology for eliciting SDoH that could 
inform Health-Related Social Needs (HRSN). In this study, 
we aim to demonstrate a potential predictive system that 
delivers personalized actionable health based on the users’ 
behavior readiness and to gain insights on the feasibility of 
applying (Blei 2003) Latent Dirichlet Allocation (LDA) to 
discover HRSN based on the SDoH revealed in a conversa-
tional dialog.

"Relationship to State-of-the-Art" contains a brief review 
of the state-of-the-art and the context of this research within 
it. We will first discuss the Theory of Planned Behavior, 
and the use of behavior constructs as an attribute vector of 
behavior readiness. We will also discuss different behavior 
theories that have been applied to explain health outcomes. 

In "Predictive Analytics Foundation", the research results 
reported elsewhere will be restated as it is applied in this 
research. In "Predictive Analytics for Personalization" using 
either an auto-regression model or a population-based model 
will be discussed. The population-based model provides an 
alternative mechanism when the auto-regression model deri-
vation fails. This could occur when there are insufficient 
data, or it fails the statistics test of the model selection pro-
cess based on Bayesian/Akaike Information Criteria. The 
foundation of applying LDA for predicting health-related 
social needs will also be discussed. In "Preliminary Study", 
we will present the results of manifold clustering based on 
the attribute vector of behavior readiness of 148 subjects 
with type 2 diabetes. This will be followed by the results 
of a preliminary study involving 22 subjects who were in 
the intervention phase for personalization during the study 
period. We will then present and discuss the result of pre-
dicting health-related social needs based on the conversa-
tional dialog of ten subjects. In "Limitations", the limitations 
of this research will be discussed, followed by the "Conclu-
sions" section sharing our thoughts on the future research 
plans.

Relationship to State‑of‑the‑Art

In health psychology, behavior models have been developed 
and applied to address healthcare issues in different settings. 
Linden et al. [17] summarized several theory-based models 
that were applied in different health settings. For example, 
Theories of Organizational Change, and Community Coali-
tion Action Theory, target disease management programs at 
the community level and focus on the planning and imple-
mentation of population-based interventions that influence 
social norms and structures. On the other hand, models such 
as Motivational Interviewing and Stages of Change Model 
focus on the motivation aspect as a driver for behavioral 
change. One of the characteristics among these models 
summarized by Linden is their focus on affecting behavio-
ral change on the organizational level or community level. 
While these models were discussed in terms of the theories 
behind, applications, and limitations for disease manage-
ment, their applicability to affect behavioral change on an 
individual level is less clear.

In contrast to the models focusing on community or 
organizational level, the Theory of Planned Behavior Model 
[1], Trans-theoretical Model of Behavior Change (Prochaska 
1992), Health Belief Model (Strecher 1997), and IMB 
(Information Motivation and Behavior Skill) Model (Chan-
dra 2010) are built upon theories of behavioral change on 
an individual level. These models have been applied to a 
specific intervention of chronic diseases, and have shown 
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clinical efficacy. One common thread is that individuals per-
ceiving the risk of a condition are more likely to engage in 
behavior to reduce risk. Thus, perceived health risks result-
ing in the change of attitude and behavior are proponents 
for higher intentions to be physically active and to maintain 
a healthy diet.

In this research, our behavior model is grounded on the 
Theory of Planned Behavior [1], with the incorporation of 
two additional behavior constructs—ownership, and moti-
vation advocated in IMB. The Theory of Planned Behavior 
(TPB) provides a model to manifest the relationship among 
attitude, subjective norm, perceived behavioral control, 
intention, and behavior. TPB is modeled through expectancy 
value and assumes that the best single predictor of an indi-
vidual’s behavior is an intention to perform that behavior. 
The intention in turn depends on the attitude of an individual 
(a positive or negative evaluation of performing a behav-
ior), the subjective norm (perception of whether relevant 
others think one should or should not perform the behavior); 
and perceived behavioral control (perception of the ease or 
difficulty of carrying out a behavior).

The TPB has been applied to study a variety of health-
related behaviors, with attitude and perceived behavioral 
control having the strongest association with intentions and 
behavior (Armitage 2001). Downs (2005) have reported the 
efficacy of the TPB to explain physical activity, while Con-
ner (2002) and Sjoberg (2004) reported the effectiveness 
of TPB to explain diet activity. Blue [6], on the other hand, 
applies TPB to investigate the cognitive factors relevant to 
physical activity and healthy eating intentions or behaviors 
of the diabetic patient population.

In many applications discussed previously, the behavior 
constructs are often modeled qualitatively. This may suffice 
if the goal is to explain health outcome efficacy in terms of 
the behavior theory being applied. In our research, the appli-
cation intent of the behavior theory is different. Instead of 
applying the behavior theory to explain the health outcome, 
our approach is to develop a quantitative behavior model 
to support the prediction of an individual’s behavior readi-
ness for self-health management. Towards this end, Struc-
ture Equation Modeling was applied to derive a quantitative 
behavior model. Further details are presented in the follow-
ing section, as well as in a report elsewhere [25].

In line with the Theory of Planned Behavior, our research 
proposes targeting a user’s behavioral beliefs to change their 
attitudes and intentions towards actionable health behav-
iors. One of the most important features of our approach 
is to track health activities that reveal information about 
appropriate health behaviors. In a review of the literature, 
Fry and Neff [19] found that frequent periodic prompts 
around: improving diet, increasing physical activity, and 
weight loss all led to positive results. Tailored prompts 
were found to be statistically significant in encouraging 

user engagement. However, for users who are already not 
engaged, these prompts do little to engage users [3]. Sawesi 
et al. [22] found in a systematic review of the literature that 
digital methods such as text messages, web applications, 
and social media interventions all were good intervention 
tools. These tools can support behavioral change in users 
and usually improve patient engagement. Finally, the use 
of mobile health interventions is an engaging method for 
improving health behaviors and is cost-effective for behav-
ioral change [27].

Predictive Analytics Foundation

SIPPA (Secure Information Processing with Privacy Assur-
ance) predictive analytics relies on two foundational build-
ing blocks developed in the research reported elsewhere [25], 
[26]. The workflow process for the application of the proposed 
predictive analytics consists of three stages. In stage 1, an indi-
vidual responds to a survey instrument linked to a behavior 
model for measuring readiness. Furthermore, a pilot subject 
is invited to respond to a survey on social needs, participate 
in an interview, and optionally participate in interacting with 
a chatbot. In stage 2, the outcome measure of the behavior 
readiness determines the cluster/subpopulation that the indi-
vidual is assigned to. The assignment is based on the similarity 
between the individual’s behavior pattern and the statistically 
significant association patterns that characterize the cluster/
subpopulation. In this research, health-related social needs are 
not included in segmenting subpopulations, because not all 
subjects agree/have a need to participate in the health-related 
social needs study. In stage 3, the population-based model 
and individualized week-over-week engagement models are 
applied to predict personalized weekly activities that optimize 
the success rate of engagement in self-health management. In 
addition, LDA is applied to discover the keyword mixtures that 
define the categories of health-related social needs. The details 
on stage 3 will be presented in the following section.

The first building block of SIPPA predictive analytics is 
a behavior model to enable behavior readiness prediction. 
Behavior readiness is a 1 × 4 vector of continuous (Real) 
numbers quantifying [ownership, motivation, intention, 
attitudes]. These behavior attributes of Real are constructs 
of behavior modeling grounded on the Theory of Planned 
Behavior. Structural Equation Modeling [13] was employed 
to link questions of a survey instrument to the behavior 
constructs defined by a weighing factor derived from the 
confirmatory factor analysis. The behavior model linking to 
the survey questions was statistically validated based on the 
responses from over 500 participants [25].

The second building block is an unsupervised learning 
approach for discovering manifold clusters. The novelty 
of manifold clustering is to induce patient subpopulation 
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clusters based on statistically significant association pat-
terns. This approach is not restricted to only continuous data 
(number of Real). In other words, this approach could be 
applied to a data set of mixed-type of both continuous and 
discrete variables. A behavior pattern, which is manifested 
by the instantiation of finite discrete variables, is statistically 
significant if it survives two tests: (1) a support measure—
as defined by normalized frequency occurrence—exceeds 
a pre-defined threshold according to the domain problem, 
and (2) the association among the observed values does not 
happen by chance as measured by the mutual information 
measure. There are two important results of the manifold 
clustering technique. First, each manifold cluster has a 
semantic interpretation characterized by statistically sig-
nificant association patterns, i.e., the grouping criterion is 
based on behavior readiness. Second, the manifold cluster-
ing does not require linearity assumption as is required by 
the Principal Component Analysis (PCA). However, it will 
produce the same result as PCA if the linearity assumption 
holds, and the iteration is based on minimizing reconstruc-
tion errors; i.e., “phase 2” regrouping is skipped in the mani-
fold clustering. While the behavior constructs are related to 
the Theory of Planned Behavior, variations exist as shown 
in the confirmative factor analysis regarding the assump-
tion on linearity; i.e., the existence (and strength) of a linear 
relationship between the behavior constructs that quantify 
behavior readiness for self-management in a population.

Predictive Analytics for Personalization

The behavior goal of personalization for self-management is 
to target specific user-directed activities that will be commu-
nicated to a user through a mobile app and to inform “fulfill-
ment” through feedback from the app. For example, when a 
personalized recommendation is to walk 10,000 steps a day, 
one would like to know whether a user follows through after 
the user received the recommendation from the mobile app. 
Two specific metrics are defined for this research to gain 
insights into the effectiveness of personalization:

Compliance Ratio (CR)

Over a period of time, compliance ratio is the ratio of the 
number of times a proposed health-related activity (i.e., 
actionable health) was acted on over the recommended/
expected number of the related activity given the clinical 
condition/disease state of an individual.

Example: Over a period of 30 days, a diabetes user is 
encouraged to self-monitor one’s glucose once a day under 
the clinical recommendation commensurate to one’s spe-
cific diabetic condition. 30 is the expected number of 

self-monitoring measurements. Over this period, the user 
self-monitors 18 times. The compliance ratio is 0.6.

Engagement Ratio (ER)

Over a given period, engagement ratio is defined as the total 
number of user interactions to the messages over the total 
number of messages sent. These messages are health tips or 
reminders for health actions and are sent through text mes-
saging, push notification, or as an in-app message.

Example: Over a period of 30 days, three messages are 
sent daily: one healthy tip, one reminder to self-monitor, 
and one reminder on exercise. The total number of mes-
sages sent is 90. A diabetes user responds to half of the 
healthy tips (i.e., 15 out of 30), and 1/5 of the reminders on 
self-monitoring, and 1/3 of the reminders on exercise. The 
engagement ratio is (15 + 6 + 10)/90 = 31/90.

Auto‑regression and Maximum Likelihood 
for Prediction

To facilitate the discussion on predictive analytics for per-
sonalization, let P be a population consisting of n individu-
als; i.e., |P|= n. C = {C1, … Ck} is the set of subpopula-
tions obtained by applying the manifold clustering to P 
as described in "Predictive Analytics Foundation"; where 
Ci ⊆ P, Ci ∩ Cj=� if i ≠ j and P =  ∪ i Ci. pj

Ci is the jth indi-
vidual in the subpopulation cluster Ci. Recall each mani-
fold cluster Ci is characterized by one or more statistically 
significant association patterns of behavior readiness attrib-
ute vector(s). For each pj

Ci individual, there exists a set of 
engagement/compliance ratios over some period of time T. 
Let us denote the set of engagement ratios be {ER1, …, ERT}. 
T could be different from one individual to another due to the 
rolling basis of the enrollment into the pilot. For example, 
one individual who just starts self-management may have 
(T =) 2 weekly engagement/compliance ratios while another 
one in the same subpopulation may have (T =) 6 weekly 
engagement/compliance ratios. Yet, they both belong to the 
same subpopulation because of their behavior readiness.

This proposed predictive analytics is based on a two-
pronged approach. First, individualized auto-regression 
will be applied for personalization when there are “suffi-
cient” data on the engagement (compliance) ratio on a type 
of messages related to self-management; e.g., healthy diet. 
Second, a population-based model prediction for personali-
zation will be applied when an individual does not (yet) have 
“sufficient” data on the engagement (compliance) ratio, or 
the individualized auto-regression model derivation fails on 
statistic validation. There are sufficient data for generating 
an individualized auto-regression model when T ≥ l—for l 
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being the order of the auto-regression model as discovered 
through model selection criteria such as AIC (Akaike Infor-
mation Criteria) or BIC (Bayesian Information Criteria) that 
pass statistical tests.

Information‑Theoretic Model Selection Approach

Bayes and Akaike Information Criteria are two common 
information-theoretic approaches for model selection as 
stated below: 

where l = number of lags,
T = total number of observations,
SSR(l) = sum of squared residual calculated from the dif-

ference between the estimated value derived from lth order 
auto-regression and the actual one.

Objective: choose l that minimizes BIC/AIC and 
p-value < 0.05, and R2- correlation is “large.”

Predictive Analytics for Personalization

Stage 1: The behavior readiness (a 1 × 4 vector of Real [own-
ership, motivation, intention, attitude]) of each individual 
in a population is derived based on the user's response to a 
survey instrument.

Stage 2: The population is partitioned into subpopula-
tions based on the result of manifold clustering; where each 
cluster is a subpopulation. Further technical details about 
manifold clustering based on statistically significant associa-
tion patterns could be found elsewhere (Sy, 2019).

Stage 3: Repeat the following for each possible self-man-
agement activity (e.g., self-monitoring, exercise, and diet 
management):

For each subpopulation Ci, derive the population statisti-
cal (joint) distribution of ER and ΔER based on the available 
engagement ratios of all individuals (pj

Ci) in the subpopula-
tion; for j = 1, 2, … |Ci|. In other words, the joint distribution 
characterized by Pr(ER, ΔER) is derived from using the ERt 
and ΔERt+1 (t = 1 … T-1) of each individual pj

Ci in the popu-
lation who has participated in the study for a time period T. 
This is referred to as a population-based model to support 
predictive analytics specific to the subpopulation cluster Ci 
for the rest of the discussions in this paper.

For each individual pj
Ci residing in a subpopulation (man-

ifold cluster) Ci:

(1)
Bayes Information Criterion (BIC) ∶ BIC(l) =

ln(SSR(l)∕T) + [(l + 1)ln(T)]∕T

(2)
Akaike Information Criterion (AIC)AIC(l) =

Ln(SSR(l)∕T) + 2∕T ,

1.	 Perform lth order auto-regression (for l = 1.. k ≤ T) on 
successive change in engagement ratio ΔER; in other 
words, ΔERt+1 = ERt+1–ERt where t = 1.. T-1.

2.	 Perform AIC or BIC to determine the desirable lag l 
given the time-series data that minimize AIC/BIC.

3.	 Note the p value and the correlation R2 between the 
actual and the estimated based on some pre-selected 
threshold for R2.

4.	 Predict the change in engagement ratio ΔERT+1
p based 

on auto-regression using T, T-1, T-2 … T-l. If the test 
statistics in (3) are reasonable (i.e., p value < 0.05 and 
threshold ≤ R2), keep the predicted value ΔERT+1

p and 
stop. Otherwise continue to step 5.

5.	 Determine the predicted value ΔERT+1
p based on 

ΔERT+1
p = ArgMaxΔER Pr(ΔER| ER = ERT

p).

Among the choices on the actionable health (e.g., self-
monitoring, exercise, diet), determine the actionable health 
recommendation based on the one with the largest ΔERT+1

p.
The steps above are repeated for predicting/recommend-

ing coaching agenda based on compliance ratio.

Predicting HRSN from LDA Result

Latent Dirichlet allocation (LDA) is a generative proba-
bilistic approach suitable for topic modeling based on a 
given text corpus. LDA is a three-level hierarchical Bayes-
ian model. When it is applied for topic discovery in natural 
language processing, a word could be conceived as a finite 
mixture over an underlying set of topics. Each topic is mod-
eled as an infinite mixture over an underlying set of topic 
probabilities. In the context of topic modeling, the topic 
probabilities provide an explicit representation of a docu-
ment. The classical approach for topic inference is based 
on variational methods and an EM algorithm for empirical 
Bayes parameter estimation. Mathematically, the probability 
distribution of topic (mixture) parameters θ, zu (a topic), and 
w (set of words) is defined as below in LDA.

where θ is a k-dimensional Dirichlet random variable;
z = { zu | u = 1..k} is a set of k topics;
D={d1,d2,...,dM} denotes a corpus of a collection of M 

documents;
N is the size of a document d (ϵ D); i.e., a document d is 

represented by a sequence of N words denoted by w = (w1,
w2,...,wN), where wn is the nth word in the sequence;

V is vocabulary size (i.e., # of unique word tokens) that 
defines the index of a word represented by a Vx1 unit-basis 
vector (i.e., one entry of “1” and all others “0”);

(3)Pr(�, z
u
,w|�, �) = Pr(�|�)ΠN

n=1 Pr(zu, |�)Pr(wn
|z

u
, �)
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β is a hyperparameter represented by a kxV matrix para-
metrizing word probabilities with βij=Pr(wj=1|zi=1);

α is a Dirichlet model hyperparameter of k dimensions for 
EM (Expectation-Maximization); i.e., θ ~ Dir(α).

In this research, a conversational dialog obtained from a 
chatbot/an interview such as below are analyzed via LDA:

P1: "I asked the MTA bus driver for a ride."
P2: "My mother threatens to kick me out of the house 
if I do not find a job."
P3: "I search for events on campus that are serving 
food, so I can eat the leftovers."

The goal of applying LDA is to obtain topic probabilities 
that reveal the distributional mixtures of words appearing in 
a topic. For example, topical focus on disparity within the 
context of SDoH and health may include (topic 1) lack of 
transportation, (topic 2) housing insecurity, (topic 3) food 
insecurity, and (topic 4) employment. An example of distri-
butional mixtures of the four topics is shown.

Topic 1: 0.04*train + 0.04*bus + 0.02*ride
Topic 2: 0.08*house + 0.05*campus
Topic 3: 0.08*food + 0.01*eat + 0.01*leftovers
Topic 4: 0.09*job + 0.01*events.

The keywords of each of the three sample conversations 
shown previously for P1—P3 will be similarly derived via 
automatic keyword extraction methods such as YAKE (Cam-
pos 2020) or RAKE (Rose 2010). An example outcome for 
P2 is shown below.

P2: 0.5*house + 0.5*job.

In this research, predicting social needs for each of the Pi 
(for i = 1.0.3) is based on calculating the product between an 
LDA-based inference matrix M and keyword distribution of 
Pi (for i = 1...3) discovered by YAKE (Campos 2020) from 
the conversational dialog obtained via an interview/chatbot 
interaction; where M represents the distributional mixtures 
defining the topics on disparity (i.e., topic 1.. topic 4).

Let w = {w1, … wN} be the set of unique word list. In 
this example, N = 10 with W = {train, bus, ride, house … 
job, events}. M is a 4 × 10 matrix (4 topics, 10 unique word 
tokens) with the first row being [0.04 0.04 0.02 0 0 …0], 
and the last row being [0 0 … 0 0.09 0.01]. Furthermore, the 
weights of the keyword distribution of P2 can be represented 
by TP2 = [0 0 0 0.5 0 … 0.5 0]. M x TP2

T = V returns a vector 
[v1 … v4]T where vi (i = 1...4) is the dot product revealing 
the degree of match indicating health-related social needs; 
e.g., the vector V derived from M x TP2

T = [0,0.04,0,0.045]T 
shows that P2 may experience employment and housing 
insecurity.

Preliminary Study

The predictive analytics approach discussed in the previous 
sections was applied to the diabetes subjects of a self-health 
management pilot conducted under an IRB-approved study 
protocol (CUNY IRB #2018–1043). The objective was to 
investigate the impact of digital health solutions to affect 
individuals’ behavior towards self-management of chronic 
diseases, particularly type 2 diabetes.

To be included in the study, the participants had to be 
at least 18 years old. They also needed a minimum educa-
tion level of a high school diploma. An additional criterion 
was that the participants had to have an H1AC of 6.0 or a 

Table 1   Participant demographic information

Ethnicity: Distribution:

Caucasian 41.40%
African American 30.90%
African
American/Hispanic

3.10%

Asian 13.80%
Hispanic 7.50%
Hispanic/Caucasian 1.10%
Indian/Asian 1.10%
Mexican/Black 1.10%
Income (in U.S. $): Distribution:
$0—$24,999 27.50%
$25,000—$49,000 23.33%
$50,000—$99,999 28.33%
$100,000—$150,000 12.50%
$150,000—$199,999 4.17%
 > $200,000 4.17%
Education level: Distribution:
High school diploma 17.89%
Some college—no degree 21.95%
2-yr college degree 16.26%
4-yr college degree 26.83%
Some graduate work 5.69%
Graduate-level degree 11.38%
Self-perceived health Distribution:
Poor 8.13%
Fair 28.46%
Good 43.09%
Very good 16.26%
Excellent 4.06%
Sex: Distribution:
Female 51%
Male 49%
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diagnosis at risk of diabetes or pre-diabetes. This means 
that participants also had a perceived risk of developing or 
had already developed diabetes and other associated chronic 
illnesses.

The behavior model developed under previous research 
for predicting behavior readiness was based on a population 
of over 500 individuals. The population consisted of both 
healthy individuals as well as individuals with chronic dis-
eases. The statistically validated model was applied in stage 
1 for predicting behavior readiness.

148 individuals with type 2 diabetes were involved in 
stage two of the preliminary study. These participants had a 
mean age of 49 and a mean H1AC of 7.89. The population 
characteristics are shown in Table 1.

These 148 individuals participated in this pilot on a 
rolling basis. During the reporting period of this research, 
some were still in a 1-month hold period for establishing 
a baseline without intervention; i.e., they have not entered 
the pilot phase for personalized intervention. Among the 
rest, 49 subjects completed/ entered the intervention phase 
of the study. During the intervention phase, the self-health 
management focused on the following three health coaching 
agenda items:

- Knowledge building and information gathering (through 
daily wisdom sent via SMS and/or push notifications).

- Discipline and skill development (through notifications 
and reminders).

- Awareness improvement (through a weekly survey).
The self-health management activities of this pilot 

included the delivery of (1) daily wisdom on diabetes man-
agement, (2) text messaging, and/or (in-app) notification 
reminders on the diet, physical exercise, and self-monitor-
ing, and (3) in-app services to track self-monitoring, diet, 
and steps. This is followed by weekly online surveys to 
improve awareness of self-management. An example of each 
of these is shown in Figs. 1, 2, 3, 4. This study will focus on 
only a retrospective analysis based on compliance ratio, and 
a forward-looking prediction based on engagement ratio, for 
evaluation purposes.   

Data‑Driven Model Development

The data collected and used for this preliminary study are 
a subset of our pilot sample. When a subject enters the 

Fig. 1   Push notification

Fig. 2   SMS reminder

Fig. 3   In-app service

Fig. 4   Weekly survey
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“intervention” phase of the study protocol, the SIPPA Health 
platform collects de-identified activity meta-data on user 
interactions with the SIPPA Health mobile app. This allows 
us to infer adherence and engagement in certain activities; 
e.g., using the app to conduct medication research or sched-
ule medication reminders.

The data from the 148 subjects of this pilot were used 
for the manifold clustering to identify subpopulation char-
acteristics defined by behavior readiness. The data from the 
49 subjects who completed/entered the “intervention” phase 
were used to derive the population-based models (Sect. "Pre-
dictive Analytics for Personalization" stage 3) to support 
the behavioral predictive analytics for personalization. The 
personalization results reported in this paper are based on 
22 subjects who were in the “intervention” phase during 
the study period of this research. A subject in the “interven-
tion” phase of the study receives a recommendation on a 
weekly basis about the activities on diet management, physi-
cal activities, and self-monitoring of glucose and other vital 
signs. Personalization for each subject is performed on a 
weekly basis to recommend one activity to focus on during 
a week.

Using the behavior readiness of 148 subjects as training 
data, the 49 subjects in the intervention phase were covered 
by four manifold clusters. Each of them was assigned to 
a cluster based on the similarity between the individual’s 
behavior readiness expressed as a pattern and the behavior 
patterns exhibiting statistically significant association that 
defines the cluster. Further details on the similarity distance 
function could be found elsewhere (Sy, 2019).

Within each cluster subpopulation, a normalized compli-
ance ratio and an engagement ratio of each subject, as well 
as the change on a weekly basis, are derived for each one 
of the activities: diet management, physical activities, and 
self-monitoring. Each ratio is normalized to account for the 
different starting times of the participants. For each subject, 
an auto-regression model is derived for each activity for each 
ratio. It is noted that developing an auto-regression model is 
not always feasible. For example, there may not be sufficient 
data, because in an early stage, an individual may have only 
activity data in one category (such as self-monitoring) but 
not the others (such as physical activities). Furthermore, the 
data may not yield a valid auto-regression model, because 
it fails the statistical test in step 4 (Sect. "Predictive Analyt-
ics for Personlization") during the model selection process 
using BIC/AIC. Typically, this happens when a subject is in 
the intervention phase for less than 4 weeks.

In a scenario where an individual auto-regression model 
is not feasible, prediction for personalization for the individ-
ual will rely on the population-based model. For each cluster 
subpopulation, we derive a population-based model—one for 
each activity—defined by the distribution of the compliance/

engagement ratio and the amount of change using the data of 
all the subjects in the cluster subpopulation. In other words, 
there are nxm such models to capture engagement (compli-
ance) ratios; where n is the number of clusters, and m is the 
number of activity categories. For example, m = 3, if there 
are three categories of activities such as diet management, 
physical exercise, and self-monitoring. A population-based 
model developed for an activity category Aj (where j = 1.. m) 
in a cluster Ci (where i = 1.. n) is used to predict an engage-
ment (compliance) ratio for an individual in Ci when an 
individual auto-regression model is not available for the 
activity category Aj.

Self‑management Study

The subjects included in this study were distributed across 
four different clusters (subpopulations). On average, a par-
ticipant spent 13 weeks in the intervention phase. The results 
reported in this paper are based on an 11-week (2.5 months) 
study of personalization. In other words, the activity data 
of each subject since participating in this pilot, leading up 
to the week of personalization, were used to develop the 
prediction models for the self-management activities. Then 
for each subject, a recommendation (either exercise or diet 
management) was derived using the prediction algorithm 
described in the previous section.

Feasibility Assessment

To determine the feasibility of the real-world applica-
tion of the proposed behavioral predictive analytic tech-
nique, the design of the preliminary study consists of two 
parts. The first part is a retrospective analysis using the 
data related to compliance. The second part is a forward-
looking prediction of the engagement. The purpose of 
retrospective analysis is to establish a base reference for 
performance assessment based on historical results. The 
forward-looking prediction is for evaluating the prediction 
performance as a time-series on a rolling basis in real time.

Retrospective Analysis  The predictive analytics will be 
greatly simplified if personalization could be based on 
only the time-series (engagement/compliance) data. That 
is, for each subject, it is possible to derive an auto-regres-
sion model that is also statistically valid according to the 
information-theoretic model selection criteria described in 
Sect. "Information-theoretic Model Selection Approach". 
In such a case, manifold-based clustering could be com-
pletely skipped, because a population-based model to sup-
port personalization would not be necessary.
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To gain insight into such scenario just described, an 
attempt was made to derive an auto-regression model 
for each subject who completed/entered the intervention 
phase. Out of the 49 subjects, the auto-regression model 
derivation was successful for 21 subjects (who completed 
or entered the intervention phase). Therefore, manifold 
clustering is required for this particular use case on apply-
ing the algorithm described in Sect. “Compliance Ratio 
(CR)”.

The compliance ratio is computed on the weekly basis 
for each subject. A subject has n data points of compliance 
ratio; where n is the number of weeks of participation in 
the intervention phase. For deriving the auto-regression 
model for a subject, (n-4) data points were used to derive/
train the auto-regression model, and the model is used to 
predict the compliance ratio of the last 4 data points for 
evaluation purposes.

Forward‑Looking Prediction  In contrast to the retrospec-
tive analysis, forward-looking prediction involves only 
those subjects who were in the intervention phase during 
the study period. There are 22 of them out of the 49 sub-
jects. Their engagement ratios were used for the predictive 
analytics task.

The engagement ratio of each active subject was com-
puted on a weekly basis. Similar to the retrospective analy-
sis, an estimated engagement ratio is derived for each week 
based on the predictive analytics technique described in 
Sect. “Predictive Analytics for Personalization”. The pre-
diction was performed by looking forward. For example, 
the prediction on engagement ratio for week n (n = 2 … 11) 
of the 11-week study period for a subject would be con-
ducted at week n-1. Then, the observed engagement ratio 
was recorded at week n. This forward-looking prediction 
process was repeated ten times in the 11-week study period.

Fig. 5   Predicted compliance ratio for a subject

Fig. 6   Observed compliance ratio for a subject

Fig. 7   Average predicted vs observed CR

Table 2   R and p values of (2.5 months) r the tests

Week 1 Week 2 Week 3 Week 4

R 0.5178 0.6673 0.7698 0.7008
p Value 0.0162 0.00095 0.000045 0.0004

Table 3   Hypothesis testing results for each cluster

t Statistic p Value

All data without clustering 0.51758 .303733
Cluster 1 0.32971 0.372949
Cluster 2 1.79319 0.061554
Cluster 3 − 0.48247 0.319928
Cluster 4 − 0.10798 0.459604
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Results of Predictive Analytics

Retrospective Analysis on Compliance Ratio

Figures 5 and 6 show the predicted and observed com-
pliance ratios of the 21 subjects for whom a statistically 
valid auto-regression model could be derived. The result 
shows the predicted and observed compliance ratios for 
each week on each of the 21 subjects, whereas a compli-
ance ratio is derived based on a 7-day average.

As shown in Fig. 7, there is a consistent pattern across 
the 4-week prediction period. Table 2 shows the R and 
the p value of the 4 weeks; whereas R is the correlation 
coefficient measuring the strength and direction of a linear 
relationship between the predicted and observed compli-
ance ratio, and the p value is a probability measure on 
the value of R that have occurred just by random chance 
(which is typically compared against the gold standard 
requiring it to be less than 0.05).  

Forward‑Looking Prediction on Engagement Ratio

In the forward-looking prediction experiment for engage-
ment ratio (instead of compliance ratio), the prediction is on 
actionable health recommendations based on the maximal 
posterior estimate as described in Sect. “Predictive Analytics 
for Personalization”. In this study, the personalized action-
able health recommendation would be either diet manage-
ment or exercise. 22 subjects were in the intervention phase 
during this period of research.

Figures 5 through 7 show evidence of its accuracy and 
consistency for predicting compliance ratio. However, we 
are also interested in the effectiveness of the technique for 
predicting engagement ratio to improve self-efficacy. To 
evaluate its effectiveness for improving self-efficacy on 

health management, this study also attempts to show per-
sonalized actionable health (recommended by the behavioral 
predictive analytics) resulting in a more active engagement 
when it is compared to that without personalization.

To understand the effect of personalization on engage-
ment, the weekly average engagement ratio without per-
sonalization is compared against the engagement ratio with 
personalization. Figure  8 shows the aggregated weekly 
engagement average, disregarding subpopulations, for com-
parison purposes.

In calculating the engagement ratio without personaliza-
tion, the average engagement ratio of each subject overtime 
prior to personalization is first calculated, then the average 
over all the subjects. Note that the average engagement ratio 
of each subject over time prior to personalization spans over 
different periods and lengths, as well as the actionable health 
recommendations because of the rolling nature of the subject 
participation in the pilot.

Figure  9 shows the engagement ratio of each indi-
vidual averaged over the participation period. There are 
half a dozen subjects with a low/zero engagement ratio. 
All of them received follow-up from this research team to 

Fig. 8   Aggregated ER w(/o) personalization

Fig. 9   Individual ER average (over 11 weeks)

Fig. 10   Observed ER by subpopulation clusters
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understand these unusual outcomes. One withdrew from the 
study, and two were unreachable during the study period. 
Among the rest, one has limited technology proficiency, and 
one other older adult subject relies on her daughter to assist 
her on certain self-management activities at a time conveni-
ent to her daughter. Furthermore, one subject (participant 15 
in Fig. 9) was active until he damaged his phone during the 
study period of this research.

Figure 10 shows the aggregated engagement average of 
22 subjects (with personalization) for each week during the 
study period distributed across four cluster subpopulations.

Discussion

Experimental Results  The results shown in Figs. 5 through 
7 in the retrospective analysis show evidence of the feasibil-
ity of behavioral predictive analytics in terms of computa-
tional efficacy as measured by accuracy and consistency.

Figure 8 shows the evidence of the applicability of the 
approach in terms of health efficacy. It shows that engage-
ment level with personalization is better than that without 
personalization.

The results shown in Figs. 9 and 10 in the forward-look-
ing experiment demonstrate the practical implementation 
feasibility. The results in Fig. 10 also reveal indirect evi-
dence of the effectiveness of the manifold-based clustering 
technique for grouping subjects into subpopulations using 
behavior readiness. In particular, subpopulation clusters 1 
and 2 are the more engaged patient subpopulations reflected 
in the behavior readiness characteristics of the clusters. 
Furthermore, personalization with strategies tailored for a 
cluster seems to show an effect over time for improving the 
engagement, in particular, the second cluster subpopulation 
that is not as high performing at the beginning.

Finally, the overall average engagement ratio with person-
alization had a mean value of 0.31 with a standard deviation 
of 0.33. The 95% confidence interval around this was [0.17, 
0.45]. By contrast, without personalization, the overall mean 
engagement ratio is 0.26 with a standard deviation of 0.31. 
The 95% confidence interval for this value was [0.13, 0.38]. 
These are overall promising results; however, with such large 
standard deviations, one of the next steps in the research 
would be to gather larger samples to mitigate this issue.

Hypothesis Testing  Although the results shown in the pre-
vious figures are encouraging, it is necessary to conduct a 
hypothesis test analysis to understand the extent of improve-
ment with clustering and personalization, as well as its sta-
tistical significance.

In reference to the results of the forward-looking predic-
tion shown in Figs. 8, 9, 10, an analysis was conducted to 
understand the effect of the population size on the statistical 

power. In particular, is the change in engagement ratio 
reported in this study generalizable?

This question was approached by conducting a t test to 
compare the difference between the means of the engage-
ment ratio with personalization and without personalization 
for the entire sample and within each cluster by investigat-
ing such change of each participant over the 11 weeks of 
the study.

While the t-statistic shows an overall improvement on 
engagement ratio when personalization is applied—irrespec-
tive of clustering, and a more significant improvement with 
clustering, none shown in Table 3 passes the p value test for 
the result to be generalizable. This suggests that the study 
will need a larger population to achieve a power that allows 
the result to be generalizable.

Health‑Related Social Needs Study

Study Protocol

A smaller subset of the pilot participants with potential 
health-related social needs (HRSN) participated in the 
HRSN study. This smaller group of ten pilot participants 
was engaged in the following three activities:

1.	 Online health-related social needs survey—SIPPA-
HRSN.

2.	 One-on-one interview for eliciting social needs in five 
areas: health, employment, transportation, housing, and 
food security.

3.	 Chatbot interaction in an open-ended conversational 
dialog.

SIPPA-HRSN is a reduced set of survey questions from 
two validated surveys. The first is the Accountable Health 
Communities HRSN survey (Billioux 2017) developed 
by the Centers for the Medicaid and Medicare Services 
(CMS) in the U.S. The second is PRAPARE developed by 
the National Association of Community Health Centers 
NACHC-PRAPARE [18] (National Association of Com-
munity Health Centers website. https://​www.​nachc.​org/​
resea​rch-​and-​data/​prapa​re/). 2016. They both aim to capture 
the social determinants of health to inform health-related 
social needs. Both surveys are validated and comprehensive 
in terms of coverage areas ranging from the lack of trans-
portation’s impact on medication refill to housing security 
due to domestic violence. As CMS moves towards codi-
fied reimbursement based on the z-codes in ICD for social 
services, AHC-HRSN is appealing in that z-code findings 
from the survey response could be particularly useful for 
identifying providers for social service referrals. PRAPARE, 

https://www.nachc.org/research-and-data/prapare/
https://www.nachc.org/research-and-data/prapare/
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on the other hand, addresses the needs for SDoH screen-
ing in a clinical setup. In particular, the survey is designed 
for capturing SDoH through survey responses that could be 
encoded into an Electronic Medical Record (EMR) under an 
interoperable format.

Since this research is focused on specific areas of social 
needs mentioned before (i.e., health, employment, transpor-
tation, housing, and food security), it would not be appro-
priate to utilize the entire screening tool of AHC-HRSN or 
PRAPARE. Instead, only questions relevant to the areas of 
our focus are included in our survey SIPPA-HRSN rather 
than questions for identifying social needs due to, say, 
mental health. In doing so, SIPPA-HRSN could leverage 
the strengths of both surveys to not only capture the health-
related social needs of pilot participants, but to (1) facilitate 
the encoding of the findings into an EMR, and (2) iden-
tify the z-code(s) for matching participants with providers 
through referral services.

Study Design

While validated surveys are effective in capturing the “what” 
part of the health-related social needs, structured responses 
coded as multiple choices for a survey question often are 
limited to reveal the “how” and “why” part of the needs. For 
example, a question in AHC-HRSN “What is your living sit-
uation today?”, a response “I have a place to live today, but 

I am worried about losing it in the future.” does not reveal 
why one is worried and how the living situation may change. 
Is it because of a rent hike that is no longer affordable? Is 
it because of aging or a health-related issue that becomes 
a problem living on a top floor of a multi-story building 
without an elevator, or something else? Understanding the 
underlying reason(s) could improve the quality and success 
rate of referral services.

The one-on-one interview is included in this study that 
attempts to better understand the “how” and “why” parts 
of the social needs. In addition, a pilot participant was also 
invited to interact with a chatbot available via in-app service 
or text messaging shown in Figs. 11 and 12.

By cross-referencing different sources including the sur-
vey response, one-on-one interview, and/or chatbot interac-
tion, insights could be drawn from empirical observations to 
also better understand the concerns on the stigma associated 
with social needs inquiry—a factor often impedes the open-
ness required for eliciting the information on health-related 
social needs. Furthermore, the unstructured conversational 
dialog during the one-on-one interview and chatbot interac-
tion also provide data to better understand the feasibility of 
applying topic modeling via LDA to infer social needs and 
its consistency in relation to the survey responses.

LDA Implementation and Setting

Gensim is a Python NLP (Natural Language Processing) 
software library providing an implementation of LDA. The 
implementation of LDA in Gensim provides a set of argu-
ments for pre-processing. The following shows the setting 
for the arguments in the calibration process that locally opti-
mizes the topic coherence:

Data source for lemmatization: WordNet.
Occurrence frequency for bigram construction: 400.
Threshold for word filtering: > 65% of documents.

Fig. 11   In-app chatbot

Fig. 12   SMS chatbot
Fig. 13   Topical keywords alluding health
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To determine the setting for the arguments during the cal-
ibration, a corpus of documents focusing on health-related 
social needs was employed. The corpus consists of 55 docu-
ments with 2747 unique tokens. A token is either a word or 
a bigram. Each document targets a specific topical area of 
health-related social needs mentioned before. These docu-
ments were drawn from a pool comprised of information/

questions/comments common during the in-take process for 
social service referrals.

Results

Calibration and Parameter Tuning  In the calibration process 
for the arguments of LDA implementation for pre-process-
ing, the criteria for determining the setting for the arguments 
are:

1.	 Trial and error to optimize Topic Coherence score based 
on the conditional information (log of conditional prob-
ability) measure.

2.	 Interpretability of the mixture defined by Topic Coher-
ence.

The basis of the calibration is the corpus mentioned in 
the previous section that targets the following areas of social 
needs: health, employment, transportation, housing, and 
food security.

In the calibration process, LDA was set to analyze with 
1000 iterations per document, and 500 passes for the entire 
corpus. The topic coherence based on Umass that measures 
the conditional information content in form of the log of 
conditional probability is -0.7745. The optimized Dirichlet 
model hyperparameter α is [0.06872154, 0.022918368, 
0.018769965, 0.031925187, 0.053812448]. Figures 13, 14, 
15, 16, 17 show the top 20 distributional mixtures of the 
five topics.

Predicting Social Needs  To predict the possible social needs 
of a participant in the pilot study, the distributions shown in 
Fig. 13, 14, 15, 16, 17 were used to formulate LDA-based 
inference matrix M described in Sect. "Predicting HRSN 
from LDA Result". In this study, M is a 5 × 100 block diago-
nal matrix where each row anchors on the 20 keywords of 

Fig. 14   Topical keywords alluding to employment

Fig. 15   Topical keywords alluding to transportation

Fig. 16   Topical keywords alluding to housing

Fig. 17   Topical keywords alluding to food security
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a topic with the corresponding weights discovered by LDA 
spanning over 20 entries in each of the five diagonal blocks.    

The conversational dialog obtained from an interview/
interaction with a chatbot is analyzed for keywords extrac-
tion using YAKE (Campos 2020). YAKE operates on a 
single document to identify keywords based on the text's 
statistical features. It should be noted that LDA requires mul-
tiple documents in a corpus for topic discovery; thus, it is 
inappropriate when the conversational dialog is transcribed 
to a single document per pilot participant.

For each pilot participant, a text document is generated 
based on the transcription of the conversational dialog. 
YAKE is applied to the text document to extract the top 
20 keywords for capturing the topical focus of potential 
social needs. A 100 × 1 query vector is composed based 
on the matching keywords between the keywords returned 
by YAKE and the topical keywords derived by LDA. 

Mathematically, the 100 × 1 query vector is constructed as 
below:

Let H(i) be a mapping function that returns a keyword 
term derived by LDA for i = 1...100. There are five topics, 
and each topic consists of 20 mixture terms that could be a 
keyword or a n-gram word; thus, resulting in 100 keyword 
terms. The value at the jth entry of a query vector (j = 1...100) 
is either the weight of H(j) derived by YAKE if H(j) appears 
as a keyword term identified by YAKE, or zero if H(j) is not 
identified as a keyword by YAKE.

The LDA-based inference matrix M (5 × 100) is then 
multiplied with the 100 × 1 query vector just mentioned to 
produce a 5 × 1 vector that predicts the potential needs in 
the five categories of this study; i.e., health, employment, 
transportation, housing, and food security. This vector is 
then normalized to show the relative needs in the five cat-
egories if there is at least one non-zero entry. Below shows 
one such example:

Topic/social needs categories Needs-estimators Normalized 
needs-esti-
mator

Employment 0.000487231 6.49%
Health 0.002917556 38.84%
Housing 0 0.00%
Food security 0.002050444 27.30%
Transportation 0.002056469 27.38%

Figure 18 shows the distribution of the predicted social 
needs across the five categories of each pilot participant. 
The social needs indicated by each individual through the 
SIPPA-HRSN survey are encoded in the label for each par-
ticipant. For example, S1-None means that in the survey 
the participant S1 did not indicate the need for any social 
support, while S2 indicated possible interest in the social 
service support for housing, and transportation. Figure 19 
shows the normalized distribution of the social needs across 
five categories of each individual.

Discussion

Figure 18 shows the social needs predicted using LDA 
and YAKE. While the predicted overall needs for the ten 
participants vary, in all except three cases, the relative 
percentage of social needs related to transportation and 
health is higher than the other three categories. This is 
consistent with the distribution shown in Fig. 19 when 
we focus on the individual (as opposed to the population) 
normalized social needs. In addition, there is an interesting 
observation on this proposed approach. It correctly pre-
dicts virtually no transportation need for the subject S10 
as is indicated in the survey by S10. However, a negligible 

Fig. 18   Individual social needs distribution

Fig. 19   Individual social needs distribution
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transportation need appears in Fig. 19. By tracing back 
to the conversational dialog, S10 has mentioned on one 
occasion that the subject’s mother needed a ride from the 
subject’s uncle to the hospital. It is because the subject’s 
mother was infected by COVID-19 and all car services 
were reluctant to transport a COVID-19 patient.

In reference to the label that encodes the category of 
social needs indicated by each individual in the survey 
response, the original design of the study is to use the 
survey response to evaluate the usefulness and effective-
ness of the prediction outcome based on the conversational 
dialog. While the areas of social needs indicated by the 
pilot participants were revealed by the prediction outcome 
based on the conversational dialog, it is also noted that 
in every case, the prediction outcomes include the social 
needs in categories not indicated in the survey response.

In reviewing the survey responses, two participants 
indicated not currently employed, while the third one was 
underemployed. Furthermore, all three did not indicate 
interest in employment assistance. Yet, in the conversa-
tional dialog, a significant portion of the conversations 
was centered on employment in all three cases, and two 
even indicated financial strains. The inconsistency between 
the conversational dialog and the survey response sug-
gested the need for a statistical reliability test if the survey 
response and the conversational dialog are to be used for 
cross-validation.

In addition, in one case, the pilot participant mentioned 
a living condition issue in both the survey and the conver-
sational dialog. However, the prediction outcome missed 
it. In reviewing the topical mixtures of LDA and the key-
word extraction outcome of applying YAKE, it is noted 
that the topical mixtures of LDA are focused on housing 
assistance, while the context of the survey on housing is 
on living conditions. This suggests the need for broad-
ening the scope of coverage (related to housing) during 
the model training phase of LDA, and including training 
materials to cover not just housing assistance but also liv-
ing conditions.

Finally, it is not yet fully understood the effect of key-
word extraction on the query vector composition. RAKE 
(Rose 2010) is another well-known keyword extraction 
method. While YAKE is unsupervised, RAKE allows 
granular control on the list and the frequency definition 
for a stop word. As a result, conversational stop words 
such as “yeah” could be filtered by RAKE through the 
definition of stop words, while YAKE will rely on the 
statistical distribution of the local features. In addition, 
when n-gram words (n > 1) are allowed in a query vector, 
more n-gram words are extracted as keywords by RAKE 
in comparison to YAKE. The differences between various 
keyword extraction methods are topics subject to further 
research in the future.

Chatbot Acceptability Assessment

As discussed in the previous section, individuals may 
respond differently depending on the communication 
modalities. In the implementation of chatbot, an individual 
could interact with the chatbot either as an in-app service 
or via text messaging. Similarly, a survey is made available 
online via a web browser on a desktop or laptop, or as an 
in-app service. The goal is to remove the access barrier 
for an individual to engage in the process of discovering 
health-related social needs.

It is conceivable that one communication modality 
could be more effective than another. A technical assess-
ment question of interest is chatbot acceptability, and more 
specifically, the feasibility of a chatbot eliciting user infor-
mation regarding social determinants of health. Towards 
answering this assessment question, the conversational 
dialog of chatbot interaction of individuals with diabe-
tes was used to predict the survey response. Four human 
evaluators participated in the prediction process based on 
the information extracted and synthesized from the chat-
bot interaction. Their predictions on the survey response 
were then compared against the actual survey response of 
an individual. Using the actual survey response as a refer-
ence, the metrics for assessing chatbot feasibility are the 
recall and precision measures:

Recall = # of questions with a predicted response/total 
# of questions.

Precision = # of questions with a correct prediction/ # 
of questions with a predicted response.

By averaging the recall measure of an evaluator over 
the number of subjects, the recall measure for each of the 
four evaluators falls into the range between 0.62 and 0.67; 
whereas the consistency across the evaluators P1 to P4 
in terms of the R score and p value (in bracket) is shown 
below:

P1 P2 P3 P4

P1 0.9857 (0) 0.9857 (0) 0.9725 (0)
P2 1 (0) 0.9738 (0)
P3 0.9732 (0)

It is noted that the recall [0.62, 0.67] is encouraging; 
i.e., the information elicited from the chatbot interaction is 
applicable to two-third of the survey questions on SDoH. 
The R scores and the zero p value indicate a consistency 
across the evaluators.

By averaging the precision measure of an evaluator over 
the number of subjects, the precision measure for each of 
the four evaluators falls into the range between 0.85 and 
0.88; whereas the consistency across the evaluators P1–P4 
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in terms of the R score and p value (in bracket) is shown 
below:

P1 P2 P3 P4

P1 0.995 (0) 0.995 (0) 0.6752 (0.01598)
P2 1 (0) 0.9959 (0)
P3 0.9959 (0)

The precision ranges over [0.85, 0.88] is an evidence of 
the usefulness of the information collected via the chatbot. 
And the R scores towards 1 and the p values towards 0 is 
a strong indicator of the consistency among the evalua-
tors in synthesizing the survey response from the chatbot 
interaction.

Assessment specific to HRSN  When the analysis is repeated 
for predicting the survey response on not just SDoH but 
Health-Related Social Needs (HRSN), the results were less 
encouraging. The recall measure for each of the four evalua-
tors falls into the range between 0.23 and 0.33; whereas the 
consistency across the evaluators P1 to P4 in terms of the R 
score and p value (in bracket) is shown below:

P1 P2 P3 P4

P1 0.907 (0) 0.5496 (0.04175) 0.8219 (0.0031)
P2 0.6718

(0.0085)
0.933
(0)

P3 0.6568 (0.01072)

The precision measure for each of the four evaluators falls 
into the range between 0.71 and 0.76; whereas the consist-
ency across the evaluators P1 to P4 in terms of the R score 
and p value (in bracket) is shown below:

P1 P2 P3 P4

P1 0.2445 
(0.3995)

0.1833
(0.53)

0.3911 (0.1668)

P2 0.7305
(0.003)

0.3354
(0.241)

P3 0.06814 (0.817)

Although the consistency across different evaluators of 
recall rate remains statistically valid, the recall rate on cov-
ering the HRSN [0.23, 0.33] is significantly lower than that 
of SDoH [0.62. 0.67]. On the other hand, when the preci-
sion measure for HRSN [0.71, 0.76] is comparable to that 
of SDoH [0.85, 0.88], it did not pass the p value test except 
one case (P2 and P3).

Assessment on  Hybrid Approach  To better understand 
the use case of chatbot, the analyses were repeated by 
comparing the result with the in-person interview; i.e., 
how does the recall/precision rate differ from each other 
when the user interacts with only the chatbot, with only 
the in-person interview, and that by combining the two? 
Figs.  20 and 21 show the differences among the three 
settings.

The results shown in Figs. 20 and 21 are insightful. 
Since it is expected that the interview will cover a more 
comprehensive scope as shown in the result of the recall 
measure, a main question is that whether the scope cov-
ered by chatbot is embedded in that of the in-person inter-
view. If this is the case, then the recall measure utilizing 
the outcomes of both the chatbot and in-person inter-
view will not improve the recall outcome. Similarly, how 
would the precision change by combining the information 
obtained from the chatbot interaction and the in-person 
interview? If the information contradicts each other, the 
precision performance will degrade.

Figure 20 shows that the scope of coverage for elicit-
ing SDoH and HRSN was significantly improved when 
the process incorporates both the chatbot and in-person 
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1 2 3 4

Chatbot Interview Chatbot+Interview

Fig. 20   Cross modalities recall rate
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Fig. 21   Cross modalities precision rate



SN Computer Science (2022) 3:237	 Page 17 of 18  237

SN Computer Science

interview. Furthermore, Fig. 21 shows that the precision 
measure did not degrade.

In other words, the qualitative analyses just shown sug-
gest that the best practice is to integrate “human into the 
loop” for deploying NLP/data analytics technology for 
eliciting SDoH and HRSN.

Limitations

In this research, the preliminary results are limited by the 
sample population size. As a result, qualitative analysis 
was performed to gain insights for designing a larger scale 
study that could provide statistical evidence on the feasi-
bility of the approach; i.e., enabling self-health manage-
ment with personalization–at scale—for population health 
management.

There are also human factors that need to be explored in 
further analyses. These include time spent in the training 
period, level of proficiency with technology, and demo-
graphic features that can impact engagement such as gen-
der and socioeconomic status.

Two technical factors related to the population-based 
model are also noteworthy. First, the population-based 
model approach is non-parametric and could potentially 
be sensitive to the additional data available over time that 
could change the behavior of the model as measured by 
information-theoretic entropy. Second, when a personal-
ized recommendation is based on the population model, it 
should be noted that the prediction strategy is a “greedy” 
approach.

In reference to step 5 of the algorithm in Sect. "Pre-
dictive Analytics for Personalization" that determines the 
predicted value ΔERT+1

p based on Max Pr(ΔERT+1
p| ERT), 

a large ΔERT+1
p is unlikely to come from a large ERT. For 

example, if ERT = 0.9, it is not possible for ΔERT+1
p > 0.1; 

or Pr(ΔERT+1
p > 0.1| ERT = 0.9) = 0. Therefore, the 

“greedy” approach has an inherent bias to work better in 
personalization for those who are moderately active com-
pared to others.

Conclusions

A behavioral predictive analytics approach was presented for 
self-management personalization. The personalized recom-
mendation is based on the engagement outcomes that reveal 
the behavior readiness of an individual in self-management. 
Auto-regression and population models were derived to sup-
port the proposed predictive analytics approach for gener-
ating personalized recommendations. A limitation of this 
research is the requirement for a “wait” period to accumulate 

sufficient data to derive a personalized auto-regression 
model. In this research, we adopt a strategy that aims to 
prioritize personalization based on the greatest improvement 
possible on engagement in a self-management area. This 
has an inherent bias that may negatively impact individuals 
with limited potential improvement on engagement. We do 
not yet know how this affects engagement and at what pace. 
Our future research will focus on understanding this aspect.

In regard to discovering health-related social needs 
based on social determinants of health via LDA, there 
are two future research goals. The first future research is 
to investigate the effect of employing different keyword 
extraction methods on discovering health-related social 
needs. The second future research goal is to develop an 
inference scheme for referral service generation that will 
match the social needs of an individual with the social 
service providers.
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