Skip to main content
Log in

Multidimensional Analysis of Near-Earth Asteroids

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

This paper proposes a quantitative approach to specify potentially hazardous asteroids using clustering tools to group a set of near-Earth asteroids (NEAs). The data pool adopted in the study contains a number of distinct indices characterizing \(\sim 25,000\) NEAs. The hierarchical clustering (HC) and multidimensional scaling (MDS) algorithmic techniques are adopted for generating two- and three-dimensional graphical representations reflecting the main features of the NEAs. These techniques provide useful computational visualization tools for extracting information embedded in data sets having multidimensional nature. The structure of the loci, given by the emerging clusters and patterns, leads to a deeper understanding of the problem. The HC and MDS rely on the selection of adequate metrics for comparing the objects in the data set. Therefore, a pool of prototype distances are tested and a number of numerical experiments reveal that the Clark distance characterizes more assertively the NEA data set. The overlapped clusters and the pattern of a curved polyhedron that emerge in the MDS charts reveal that some PHAs may be overlooked with standard classifications of NEAs based merely on some scalar index, such as the case of the perihelion distance \(q<1.3\) AU. Furthermore, it is observed that the MDS is superior in performance to the HC since it takes advantage of three-dimensional representations. In fact, three-dimensional plots require iterative operations of rotation, shifting and magnification for achieving an efficient visualization, but such procedures are straightforward with present day computational resources. This strategy allows the adoption of advanced scientific data processing and visualization techniques that lead to ‘maps’ close to our understanding of the NEA impact risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Binzel RP, Lupishko DF, Di Martino M, Whitheley RJ, Hahn GJ. Physical properties of near-earth objects. In: Asteroids III. Arizona: University of Arizona Press; 2002. p. 205–18.

    Google Scholar 

  2. Masiero JR, et al. Asteroid diameters and albedos from NEOWISE reactivation mission years four and five. AAS Planet Sci J. 2020;1:10.

    Google Scholar 

  3. Granvik M, et al. Super-catastrophic disruption of asteroids at small perihilion distances. Nature. 2016;530:303–6.

    Article  Google Scholar 

  4. Bottke WF, et al. Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus. 2002;156(2):399–433.

    Article  Google Scholar 

  5. Granvik M, et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus. 2018;312:181–207.

    Article  Google Scholar 

  6. de Elía GC, Brunini A. Collisional and dynamical evolution of the main belt and NEA population. Astron Astrophys. 2007;466:1159–77.

    Article  Google Scholar 

  7. Cibulková H, Brož M, Benavidez PG. A six-part collisional model of the main asteroid belt. Icarus. 2014;241:358–72.

    Article  Google Scholar 

  8. Zain PS, de Elía GC, Di Sisto RP. New multi-part collisional model of the main belt: the contribution to near-Earth asteroids. Astron Astrophys. 2020;639:A9.

    Article  Google Scholar 

  9. Jedicke R, Bolin B, Granvik M, Beshore E. A fast method for quantifying observational selection effects in asteroid surveys. Icarus. 2016;266:173–88.

    Article  Google Scholar 

  10. Larson S, et al. The Catalina Sky survey for NEOs. Bull Am Astron Soc. 1998;30:1037.

    Google Scholar 

  11. Jedicke R, Metcalfe TS. The orbital and absolute magnitude distributions of main belt asteroids. Icarus. 1998;131:245–60.

    Article  Google Scholar 

  12. Drummond JD. The D discriminant and near-earth asteroid streams. Icarus. 2000;146(2):453–75.

    Article  Google Scholar 

  13. Fu H, Jedicke R, Durda DD, Fevig R, Scotti JV. Identifying near earth object families. Icarus. 2005;178(2):434–49.

    Article  Google Scholar 

  14. Schunová E, et al. Searching for the first near-Earth object family. Icarus. 2012;220:1050–63.

    Article  Google Scholar 

  15. Jopek TJ. The near earth asteroid associations. Proc Int Astron Union. 2012;10(H16):474–5.

    Article  Google Scholar 

  16. de la Fuente Marcos C, de la Fuente Marcos R. Far from random: dynamical groupings among the NEO population. Month Not Roy Astron Soc. 2016;456(3):2946–56.

    Article  MathSciNet  Google Scholar 

  17. Zappalà V, Cellino A, Farinella P, Knezevic Z. Asteroid families. I-Identification by hierarchical clustering and reliability assessment. Astron J. 1990;100(6):2030–46.

    Article  Google Scholar 

  18. Hartigan JA. Clustering algorithms. New York: John Wiley & Sons; 1975.

    MATH  Google Scholar 

  19. Cha S. Taxonomy of nominal type histogram distance measures. In: Proceedings of the American Conference on Applied Mathematics. Harvard, MA, USA; 2008. p. 325–30.

  20. Baggaley WJ, Galligan DP. Cluster analysis of the meteoroid orbit population. Planet Space Sci. 1997;45:865.

    Article  Google Scholar 

  21. Galligan DP. A direct search for significant meteoroid stream presence within an orbital data set. Mon Not R Astron Soc. 2003;340:893.

    Article  Google Scholar 

  22. Zappalà V, Bendjoya P, Cellino A, Farinella P, Froeschle C. Asteroid families: search of a 12487-asteroid sample using two different clustering techniques. Icarus. 1995;116:291.

    Article  Google Scholar 

  23. Bendjoya P, Zappalà V. Asteroids III. Tucson: University of Arizona Press; 2002. p. 613.

    Book  Google Scholar 

  24. Carruba V, et al. A multi-domain approach to asteroid families identification. Mon Not R Astron Soc. 2013;433:2075–96.

    Article  Google Scholar 

  25. Masiero JR, et al. Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophys J. 2013;770:7.

    Article  Google Scholar 

  26. Jopek TJ. The orbital clusters among the near-Earth asteroids. Mon Not R Astron Soc. 2020;494(1):680–93.

    Article  Google Scholar 

  27. Davison ML. Multidimensional scaling. New York: Wiley; 1983. p. 85.

    MATH  Google Scholar 

  28. Cox TF, Cox MA. Multidimensional scaling. Boca Raton: CRC Press; 2000.

    Book  MATH  Google Scholar 

  29. Borg I, Groenen PJ. Modern multidimensional scaling: theory and applications. NewYork: Springer-Verlag; 2005.

    MATH  Google Scholar 

  30. Saeed N, Nam H, Haq MIU, Saqib DBM. A survey on multidimensional scaling. ACM Comput Surv. 2018;51(3):47.

    Google Scholar 

  31. Banda JM, Anrgyk R. Usage of dissimilarity measures and multidimensional scaling for large scale solar data analysis. In Proceedings of the 2010 conference on Intelligent Data Understanding. December 1-3, 2010.

  32. Tenreiro Machado J, Hamid MS. Multidimensional scaling analysis of the solar system objects. Commun Nonlinear Sci Numer Simul. 2019;79:104923.

    Article  MathSciNet  MATH  Google Scholar 

  33. Hamid Mehdipour S, Tenreiro Machado J. Cluster analysis of the large natural satellites in the solar system. Appl Math Model. 2021;89(2):1268–78.

    Article  MathSciNet  MATH  Google Scholar 

  34. Jiang I-G, Yeh L-C, Hung W-L, Yang M-S. Data analysis on the extra-solar planets using robust clustering. Mon Not R Astron Soc. 2006;370:1379.

    Article  Google Scholar 

  35. Cil I. Consumption universes based supermarket layout through association rule mining and multidimensional scaling. Expert Syst Appl. 2012;39(10):8611–25.

    Article  Google Scholar 

  36. Corten R. Visualization of social networks in Stata using multidimensional scaling. Stata J. 2011;11(1):52.

    Article  Google Scholar 

  37. Machado JT, Lopes AM. Multidimensional scaling analysis of soccer dynamics. Appl Math Model. 2017;45:642–52.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lopes AM, Tenreiro Machado JA, Pinto CM, Galhano AM. Fractional dynamics and MDS visualization of earthquake phenomena. Comput Math Appl. 2013;66(5):647–58.

    Article  MathSciNet  Google Scholar 

  39. Tenreiro Machado JA, Galhano A, Cao Labora D. A clustering perspective of the Collatz conjecture. Mathematics. 2021;9(4):314.

    Article  Google Scholar 

  40. Tenreiro Machado J, Luchko Y. Multidimensional scaling and visualization of patterns in distribution of nontrivial zeros of the zeta-function. Commun Nonlinear Sci Numer Simul. 2021;102:105924.

    Article  MathSciNet  MATH  Google Scholar 

  41. Tzagarakis C, Jerde TA, Lewis SM, Uǧurbil K, Georgopoulos AP. Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation. Exp Brain Res. 2009;4(3):369–80.

    Article  Google Scholar 

  42. Lopes AM, Andrade JP, Tenreiro Machado JA. Multidimensional scaling analysis of virus diseases. Comp Methods Programs Biomed. 2016;131:97–110.

    Article  Google Scholar 

  43. Tenreiro Machado JA, Lopes AM. The persistence of memory. Nonlinear Dyn. 2014;79(1):63–82.

    Article  Google Scholar 

  44. Tenreiro Machado J, Lopes AM. A computational perspective of the periodic table of elements. Commun Nonlinear Sci Numer Simul. 2019;78:104883.

    Article  MathSciNet  MATH  Google Scholar 

  45. Lopes AM, Tenreiro Machado JA. Fractional-order sensing and control: embedding the nonlinear dynamics of robot manipulators into the multidimensional scaling method. Sensors. 2021;21(22):7736.

    Article  Google Scholar 

  46. Deza MM, Deza E. Encyclopedia of Distances. Berlin, Heidelberg: Springer-Verlag; 2009.

    Book  MATH  Google Scholar 

  47. Cha S-H. Measures between probability density functions. Int J Math Models Methods Appl Sci. 2007;1(4):300–7.

    MathSciNet  Google Scholar 

  48. Tenreiro Machado JA, Rocha-Neves JM, Andrade JP. Computational analysis of the SARS-CoV-2 and other viruses based on the Kolmogorov’s complexity and Shannon’s information theories. Nonlinear Dyn. 2020;101(3):1731–50.

    Article  Google Scholar 

  49. Borg I, Groenen PJ. Modeling asymmetric data. New York: Springer-Verlag; 2005. p. 495–518.

    Google Scholar 

  50. Lopes AM, Tenreiro Machado JA. Entropy analysis of industrial accident data series. ASME J Comput Nonlinear Dyn. 2016;11(3):0310061–7.

    Google Scholar 

  51. Lopes AM, Tenreiro Machado JA. Multidimensional scaling analysis of generalized mean discrete-time fractional order controllers. Commun Nonlinear Sci Numer Simul. 2021;95:105657.

    Article  MathSciNet  MATH  Google Scholar 

  52. Lopes AM, Tenreiro Machado JA. Modeling and visualizing competitiveness in soccer leagues. Appl Math Model. 2021;92:136–48.

    Article  MathSciNet  MATH  Google Scholar 

  53. Lopes AM, Tenreiro Machado JA. Multidimensional scaling and visualization of patterns in global large-scale accidents. Chaos Solitons Fract. 2022;157:111951.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hamid Mehdipour.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, J.A.T., Mehdipour, S.H. Multidimensional Analysis of Near-Earth Asteroids. SN COMPUT. SCI. 3, 207 (2022). https://doi.org/10.1007/s42979-022-01103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01103-2

Keywords

Navigation