Skip to main content
Log in

Robustness of Numerically Computed Contraction Metrics

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Contraction metrics are an important tool to show the existence of exponentially stable equilibria or periodic orbits, and to determine a subset of their basin of attraction. One of the main advantages is that contraction metrics are robust with respect to perturbations of the system, i.e. a contraction metric for one particular system is also a contraction metric for a perturbed system. In this paper, we discuss numerical methods to compute contraction metrics for dynamical systems, with exponentially stable equilibria or periodic orbits, and perform perturbation analysis. In particular, we prove the robustness of such metrics to perturbations of the system and give concrete bounds. The results imply that a contraction metric, computed for a particular system, remains a contraction metric for the perturbed system. We illustrate our results by computing contraction metrics for systems from the literature, both with exponentially stable equilibria and exponentially stable periodic orbits, and then investigate the validity of the metrics for perturbed systems. Parts of the results are published in Giesl et al. (Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giesl P, Hafstein S, Mehrabinezhad I. Robustness of contraction metrics computed by radial basis functions. In: Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2021, pp. 592–9

  2. Rüffer B, van de Wouw N, Mueller M. Convergent system vs. incremental stability. Syst Control Lett. 2013;62(3):277–85.

    Article  MathSciNet  Google Scholar 

  3. Fromion, V., Scorletti, G.: Connecting nonlinear incremental Lyapunov stability with the linearizations Lyapunov stability. In: Proc. 44th IEEE Conf. Decis. Control, pp. 4736–4741 (2005)

  4. Lohmiller W, Slotine J-J. On contraction analysis for non-linear systems. Automatica. 1998;34:683–96.

    Article  MathSciNet  Google Scholar 

  5. Angeli D. A Lyapunov approach to incremental stability properties. IEEE Trans Autom Control. 2002;47(3):410–21.

    Article  MathSciNet  Google Scholar 

  6. Forni F, Sepulchre R. A differential Lyapunov framework for Contraction Analysis. IEEE Trans Autom Control. 2014;59(3):614–28.

    Article  MathSciNet  Google Scholar 

  7. Lewis DC. Metric properties of differential equations. Am J Math. 1949;71(2):294–312.

    Article  MathSciNet  Google Scholar 

  8. Opial Z. Sur la stabilité asymptotique des solutions d’un système d’équations différentielles. Ann Polon Math. 1960;7(3):259–67.

    Article  MathSciNet  Google Scholar 

  9. Demidovič BP. On the dissipativity of a certain non-linear system of differential equations I. Vestnik Moskov Univ Ser I Mat Meh. 1961;1961(6):19–27.

    MathSciNet  Google Scholar 

  10. Jouffroy J. Some ancestors of contraction analysis. In: 44th IEEE Conference on Decision and Control, IEEE, Seville ,2005, p. 5450.

  11. Giesl P, Hafstein S, Kawan C. Review on contraction analysis and computation of contraction metrics. 2022.

  12. Krasovskii NN. Problems of the Theory of Stability of Motion. Stanford: Stanford University Press; 1963.

    MATH  Google Scholar 

  13. Hartman P. Ordinary differential equations. New York: Wiley; 1964.

    MATH  Google Scholar 

  14. Hahn W. Stability of motion. Berlin: Springer; 1967.

    Book  Google Scholar 

  15. Giesl P. Converse theorems on contraction metrics for an equilibrium. J Math Anal Appl. 2015;424:1380–403.

    Article  MathSciNet  Google Scholar 

  16. Giesl P, Wendland H. Construction of a contraction metric by meshless collocation. Discrete Contin Dyn Syst Ser B. 2019;24(8):3843–63.

    MathSciNet  MATH  Google Scholar 

  17. Giesl P, Wendland H. Kernel-based discretisation for solving matrix-valued PDES. SIAM J Numer Anal. 2018;56(6):3386–406.

    Article  MathSciNet  Google Scholar 

  18. Giesl P, Hafstein S, Mehrabinezhad I. Computation and verification of contraction metrics for exponentially stable equilibria. J Comput Appl Math. 2021;390: 113332.

    Article  MathSciNet  Google Scholar 

  19. Borg G. A condition for the existence of orbitally stable solutions of dynamical systems, vol. 153. Stockholm: Elander; 1960.

    MATH  Google Scholar 

  20. Stenström B. Dynamical systems with a certain local contraction property. Math Scand. 1962;11:151–5.

    Article  MathSciNet  Google Scholar 

  21. Hartman P, Olech C. On global asymptotic stability of solutions of differential equations. Trans Am Math Soc. 1962;104:154–78.

    MathSciNet  Google Scholar 

  22. Kravchuk AY, Leonov GA, Ponomarenko DV. A criterion for the strong orbital stability of the trajectories of dynamical systems I. Diff Uravn. 1992;28:1507–20.

    MATH  Google Scholar 

  23. Leonov GA, Burkin IM, Shepelyavyi AI. Frequency methods in oscillation theory series mathematics and its applications, vol. 357. Dordrecht: Kluwer; 1996.

    Book  Google Scholar 

  24. Leonov GA, Noack A, Reitmann V. Asymptotic orbital stability conditions for flows by estimates of singular values of the linearization. Nonlinear Anal. 2001;44(8):1057–85.

    Article  MathSciNet  Google Scholar 

  25. Yang X. Remarks on three types of asymptotic stability. Syst Control Lett. 2001;42:299–302.

    Article  MathSciNet  Google Scholar 

  26. Manchester IR, Slotine J-JE. Transverse contraction criteria for existence, stability, and robustness of a limit cycle. Syst Control Lett. 2014;63:32–8.

    Article  MathSciNet  Google Scholar 

  27. Hauser J, Chung CC. Converse Lyapunov functions for exponentially stable periodic orbits. Syst Control Lett. 1994;23(1):27–34.

    Article  MathSciNet  Google Scholar 

  28. Leonov GA. Generalization of the Andronov-Vitt theorem. Regul Chaotic Dyn. 2006;11(2):281–9.

    Article  MathSciNet  Google Scholar 

  29. Giesl P. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete Contin Dyn Syst Ser B. 2020;26(9):4839–65.

    MathSciNet  MATH  Google Scholar 

  30. Giesl P. Computation of a contraction metric for a periodic orbit using meshfree collocation. SIAM J Appl Dyn Syst. 2019;18(3):1536–64.

    Article  MathSciNet  Google Scholar 

  31. Giesl P, Hafstein S, Mehrabinezhad I. Computation and verification of contraction metrics for periodic orbits. J Math Anal Appl. 2021;503(2):125309–32.

    Article  MathSciNet  Google Scholar 

  32. Giesl P, Hafstein S. Construction of a CPA contraction metric for periodic orbits using semidefinite optimization. Nonlinear Anal. 2013;86:114–34.

    Article  MathSciNet  Google Scholar 

  33. Aylward EM, Parrilo PA, Slotine J-JE. Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming. Autom J IFAC. 2008;44(8):2163–70.

    Article  MathSciNet  Google Scholar 

  34. Argáez C, Giesl P, Hafstein S. Comparison of different radial basis functions in dynamical systems. In: Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, 2021, pp 394–405

  35. Walter W. Ordinary differential equation. New York: Springer; 1998.

    Book  Google Scholar 

  36. Giesl P, Hafstein S. Computation and verification of Lyapunov functions. SIAM J Appl Dyn Syst. 2015;14(4):1663–98.

    Article  MathSciNet  Google Scholar 

  37. Iske, A.: Perfect centre placement for radial basis function methods. Technical Report TUM-M9809, TU Munich, Germany (1998)

  38. Giesl P. Construction of global Lyapunov functions using radial basis functions. In: Lecture notes in mathematics, vol. 1904. Berlin: Springer; 2007.

    Google Scholar 

  39. Giesl P, Hafstein S. Uniformly regular triangulations for parameterizing Lyapunov functions. In: Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2021, pp 549–57

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Mehrabinezhad.

Ethics declarations

Funding

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Informatics in Control, Automation and Robotics” guest edited by Kurosh Madani, Oleg Gusikhin and Henk Nijmeijer.

Appendix A Description of the Algorithm

Appendix A Description of the Algorithm

In this section, we will provide a detailed version of the algorithm both for the periodic orbit case, and the equilibrium point case, presented next to each other for the convenience of the reader. Given is a system \({{\dot{\varvec{x}}}}=\varvec{f}(\varvec{x})\), with \(\varvec{f}\in C^{\sigma + 1}(\mathbb {R}^n;\mathbb {R}^n)\), where \(\sigma =\lceil k+\frac{n+1}{2} \rceil\) and \(k\ge 2\) if n is odd and \(k\ge 3\) if n is even, so that the minimum smoothness needed for the contraction metric M and its optimal recovery S is guaranteed.

The idea is to increase the number of collocation points and vertices gradually so that we obtain a small enough fill distance and fine enough triangulation. The steps of the algorithm are as follows:

  • STEP 0. setting the constants and parameters.

    Fix \(d \ge 2\sqrt{n}\), \(k\ge 2\) if n is odd and \(k\ge 3\) if n is even, \(c>0\), and the Wendland function \(\psi _0(r):=\psi _{l,k}(cr)\) with \(l=\lfloor \frac{n}{2}\rfloor +k+1\). Denote \(\psi _{q+1}(r)=\frac{1}{r}\frac{d\psi _q}{dr}(r)\) for \(q=0,1\).

    Further, fix a compact set \({\mathcal C}\subset \mathbb {R}^n\) that we triangulate and where we want to compute a contraction metric for the system, and an open set \({\mathcal O}\supset {\mathcal C}\). Start with \(h_\text {collo}>0\), \(h_\text {triang}>0\).

  • STEP I. RBF subroutine

    Choose a set of pairwise distinct points \(X=\{x_1,\ldots ,x_N\}\) in \({\mathcal O}\) as collocation points with fill distance \(h_{X,{\mathcal O}} \le h_\text {collo}\). To obtain a solution of the optimal recovery problem based on RBF approximation we follow these steps:

    (a):

    Compute the coefficients \(b_{(\ell ,i,j),(k,\mu ,\nu )}\) defined as

    $$\begin{aligned}&b_{(\ell ,i,j),(k,\mu ,\nu )}\nonumber \\&\quad = \psi _0(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\bigg [\sum _{p=1}^n Df_{pi}(\varvec{x}_\ell )Df_{p\mu }(\varvec{x}_k)\delta _{\nu j}+Df_{\mu i}(\varvec{x}_\ell ) Df_{j\nu }(\varvec{x}_k)\nonumber \\&\qquad +Df_{i\mu }(\varvec{x}_k) Df_{\nu j}(\varvec{x}_\ell )+\delta _{i\mu } \sum _{p=1}^n Df_{p\nu }(\varvec{x}_k)Df_{pj}(\varvec{x}_\ell )\bigg ]\nonumber \\&\qquad +\psi _1(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_k-\varvec{x}_\ell ,\varvec{f}(\varvec{x}_k)\rangle \left[ Df_{\mu i}(\varvec{x}_\ell )\delta _{\nu j}+\delta _{i\mu } Df_{\nu j}(\varvec{x}_\ell )\right] \nonumber \\&\qquad +\psi _1(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_\ell -\varvec{x}_k,\varvec{f}(\varvec{x}_\ell )\rangle \left[ Df_{i\mu }(\varvec{x}_k)\delta _{\nu j}+\delta _{i\mu }Df_{j\nu }(\varvec{x}_k)\right] \nonumber \\&\qquad -\psi _1(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{f}(\varvec{x}_\ell ),\varvec{f}(\varvec{x}_k)\rangle \delta _{i\mu }\delta _{j\nu }\nonumber \\&\qquad +\psi _2(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_k-\varvec{x}_\ell ,\varvec{f}(\varvec{x}_k)\rangle \langle \varvec{x}_\ell -\varvec{x}_k,\varvec{f}(\varvec{x}_\ell )\rangle \delta _{i\mu }\delta _{j\nu }. \end{aligned}$$
    (A1)

    for \(1 \le k, \ell \le N\), and \(1 \le i, j, \mu , \nu \le n\). Here and below, \(\langle \varvec{x},\varvec{y}\rangle =\sum _{k=1}^nx_ky_k\) denotes the Euclidean scalar product.

    (\(a'\)):

    For the periodic orbit case we need to fix a \(c_0 \in \mathbb {R}^+\), and \(\varvec{y}_0 \in {\mathcal A}(\Omega )\), then calculate the coefficients \(b_{(\ell ,i,j),(k,\mu ,\nu )}\), \(b_{0,(k,\mu ,\nu )}\), \(b_{(\ell ,i,j),0}\) and \(b_{0,0}\) for \(1\le k,\ell \le N\), \(1\le i,j,\mu ,\nu \le n\) using the following formulas

    $$\begin{aligned}&b_{0,(k,\mu ,\nu )}\nonumber \\&\quad = \psi _0(\Vert \varvec{x}_k-\varvec{y}_0\Vert _2)\bigg [\sum _{p=1}^n V_{p\mu }(\varvec{x}_k)f_p(\varvec{y}_0)f_\nu (\varvec{y}_0)+\sum _{p=1}^n V_{p\nu }(\varvec{x}_k)f_p(\varvec{y}_0)f_\mu (\varvec{y}_0)\bigg ]\nonumber \\&\qquad +\psi _1(\Vert \varvec{x}_k-\varvec{y}_0\Vert _2)\langle \varvec{x}_k-\varvec{y}_0,\varvec{f}(\varvec{x}_k)\rangle f_\mu (\varvec{y}_0)f_\nu (\varvec{y}_0) \end{aligned}$$
    (A2)
    $$\begin{aligned}&b_{0,0}\nonumber \\&\quad =\psi _0(0)\Vert \varvec{f}(\varvec{y}_0)\Vert _2^4. \end{aligned}$$
    (A3)
    $$\begin{aligned}&b_{(\ell ,i,j),(k,\mu ,\nu )}\nonumber \\&\quad = \psi _0(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\bigg [\sum _{p=1}^n V_{pi}(\varvec{x}_\ell )V_{p\mu }(\varvec{x}_k)\delta _{\nu j}+V_{\mu i}(\varvec{x}_\ell ) V_{j\nu }(\varvec{x}_k)\nonumber \\&\qquad +V_{i\mu }(\varvec{x}_k) V_{\nu j}(\varvec{x}_\ell )+\delta _{i\mu } \sum _{p=1}^n V_{p\nu }(\varvec{x}_k)V_{pj}(\varvec{x}_\ell )\bigg ]\nonumber \\&\qquad +\psi _1(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_k-\varvec{x}_\ell ,\varvec{f}(\varvec{x}_k)\rangle \left[ V_{\mu i}(\varvec{x}_\ell )\delta _{\nu j}+\delta _{i\mu } V_{\nu j}(\varvec{x}_\ell )\right] \nonumber \\&\qquad +\psi _1(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_\ell -\varvec{x}_k,\varvec{f}(\varvec{x}_\ell )\rangle \left[ V_{i\mu }(\varvec{x}_k)\delta _{\nu j}+\delta _{i\mu }V_{j\nu }(\varvec{x}_k)\right] \nonumber \\&\qquad -\psi _1(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{f}(\varvec{x}_\ell ),\varvec{f}(\varvec{x}_k)\rangle \delta _{i\mu }\delta _{j\nu }\nonumber \\&\qquad +\psi _2(\Vert \varvec{x}_k-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_k-\varvec{x}_\ell ,\varvec{f}(\varvec{x}_k)\rangle \langle \varvec{x}_\ell -\varvec{x}_k,\varvec{f}(\varvec{x}_\ell )\rangle \delta _{i\mu }\delta _{j\nu } \end{aligned}$$
    (A4)
    $$\begin{aligned}&\text {and }b_{(\ell ,i,j),0}\nonumber \\&\quad = \psi _0(\Vert \varvec{y}_0-\varvec{x}_\ell \Vert _2)\bigg [\sum _{p=1}^n V_{pi}(\varvec{x}_\ell )f_p(\varvec{y}_0)f_j(\varvec{y}_0)+\sum _{p=1}^n V_{pj}(\varvec{x}_\ell )f_p(\varvec{y}_0)f_i(\varvec{y}_0)]\nonumber \\&\qquad +\psi _1(\Vert \varvec{y}_0-\varvec{x}_\ell \Vert _2)\langle \varvec{x}_\ell -\varvec{y}_0,\varvec{f}(\varvec{x}_\ell )\rangle f_i(\varvec{y}_0)f_j(\varvec{y}_0). \end{aligned}$$
    (A5)
    (b):

    Calculate the coefficients \(c_{(\ell ,i,j),(k,\mu ,\nu )}\) defined as

    $$\begin{aligned} c_{(\ell ,i,j),(k,\mu ,\nu )} = \frac{1}{4}\left( b_{(\ell ,i,j),(k,\mu ,\nu )}+b_{(\ell ,j,i),(k,\nu ,\mu )}+b_{(\ell ,i,j),(k,\nu ,\mu )} +b_{(\ell ,j,i),(k,\mu ,\nu )} \right) , \end{aligned}$$
    (A6)

    where we assume \(\mu \le \nu\) and \(i\le j\). The coefficients \(c_{\cdot ,\cdot }\) form a symmetric matrix of size \(N\frac{n(n+1)}{2}\).

    (\(b'\)):

    For the periodic orbit case, in addition to the coefficients formula in (b), we need one more row and column in the matrix so for all \((\ell ,i,j)\) with \(1\le \ell \le N\), \(1\le i\le j\le n\) we have

    $$\begin{aligned} c_{0,0}\,=\, & {} b_{0,0}, \end{aligned}$$
    (A7)
    $$\begin{aligned} c_{(\ell ,i,j),0}\,=\, & {} b_{(\ell ,i,j),0}, \end{aligned}$$
    (A8)
    $$\begin{aligned} c_{0,(k,\mu ,\nu )}= & {} \frac{1}{2}\left( b_{0,(k,\mu ,\nu )}+b_{0,(k,\nu ,\mu )}\right) \ = \ b_{0,(k,\mu ,\nu )}, \end{aligned}$$
    (A9)

    where we assume \(\mu \le \nu\). The coefficients \(c_{\cdot ,\cdot }\) form a symmetric matrix of size \(N\frac{n(n+1)}{2}+1\).

    (c):

    Determine \(\gamma _k^{(\mu ,\nu )}\), by solving the linear system

    $$\begin{aligned}&\sum _{k=1}^N\sum _{1\le \mu \le \nu \le n} c_{(\ell ,i,j),(k,\mu ,\nu )}\gamma _k^{(\mu ,\nu )}\nonumber \\&\quad =(F (S)(\varvec{x}_\ell ))_{i,j} =\lambda _\ell ^{(i,j)}(S) = -C_{ij} \end{aligned}$$
    (A10)

    for \(1 \le \ell \le N\), and \(1 \le i \le j \le n\). Note that (A10) is a system of \(N\frac{n(n+1)}{2}\) equations in \(N\frac{n(n+1)}{2}\) unknowns and we usually choose \(C_{ij}\) as constants, although the method also works for \(C_{ij}(\varvec{x}_\ell )\).

    (\(c'\)):

    For the periodic orbit case the \(\gamma _k^{(\mu ,\nu )}\) solve the modified linear system

    $$\begin{aligned} \sum _{k=1}^N\sum _{1\le \mu \le \nu \le n} c_{(\ell ,i,j),(k,\mu ,\nu )}\gamma _k^{(\mu ,\nu )}+ c_{(\ell ,i,j),0}\gamma _0= & {} -C_{ij}(\varvec{x}_\ell ) \end{aligned}$$
    (A11)
    $$\begin{aligned} \sum _{k=1}^N\sum _{1\le \mu \le \nu \le n} c_{0,(k,\mu ,\nu )}\gamma _k^{(\mu ,\nu )}+ c_{0,0}\gamma _0= & {} c_0 \Vert \varvec{f}(\varvec{y}_0)\Vert _2^4 \end{aligned}$$
    (A12)

    for \(1\le \ell \le N\), \(1\le i\le j\le n\). Note that this is a system of \(N\frac{n(n+1)}{2}+1\) equations in \(N\frac{n(n+1)}{2}+1\) unknowns.

    (d):

    Compute \(\beta _k\in \mathbb {S}^{n\times n}\) from \(\gamma _k\); recalling that

    $$\begin{aligned} \beta _k^{(j,i)}= & {} \beta _k^{(i,j)}=\frac{1}{2}\gamma _k^{(i,j)} \text{ if } i\not = j, \\ \beta _k^{(i,i)}= & {} \gamma _k^{(i,i)}. \end{aligned}$$
    (\(d'\)):

    For the periodic orbit case, we need relations in (d) and \(\beta _0=\gamma _0\).

    (e):

    We now have a formula for the optimal recovery

    $$\begin{aligned} S(\varvec{x})= & {} \sum _{k=1}^N \bigg [ \psi _0(\Vert \varvec{x}_k-\varvec{x}\Vert _2)\left[ D\varvec{f}(\varvec{x}_k)\beta _k+ \beta _k D\varvec{f}(\varvec{x}_k)^T \right] \nonumber \\&~~~~~ + \, \psi _1(\Vert \varvec{x}_k-\varvec{x}\Vert _2)\langle \varvec{x}_k-\varvec{x}, \varvec{f}(\varvec{x}_k)\rangle \beta _k\bigg ]. \end{aligned}$$
    (A 13)
    (\(e'\)):

    For the periodic orbit case, we can compute \(S(\varvec{x})\) with

    $$\begin{aligned} S(\varvec{x})= & {} \sum _{k=1}^N\bigg [\psi _0(\Vert \varvec{x}_k-\varvec{x}\Vert _2)\left[ V(\varvec{x}_k)\beta _k+ \beta _k V (\varvec{x}_k)^T \right] \nonumber \\&+\psi _1(\Vert \varvec{x}_k-\varvec{x}\Vert _2)\langle \varvec{x}_k-\varvec{x},\varvec{f}(\varvec{x}_k)\rangle \beta _k\bigg ]\nonumber \\&+\beta _0 \psi _0(\Vert \varvec{y}_0-\varvec{x}\Vert _2)\varvec{f}(\varvec{y}_0)\varvec{f}(\varvec{y}_0)^T\,. \end{aligned}$$
    (A 14)
  • STEP II. CPA subroutine

    Fix an (hd)-bounded triangulation \({\mathcal T}\) with \(h \le h_\text {triang}\) and \({\mathcal D}_{\mathcal T}={\mathcal C}\). Note that d denotes a bound on the degeneracy of the simplices, for details see [39].

    (a):

    Compute the values \(S(\varvec{y})\) at the vertices of the triangulation \(\varvec{y}\in {\mathcal V}_{\mathcal T}\) and check if they are positive definite. If not, decrease \(h_\text {collo}\) by a factor, e.g. \(h_\text {collo} \leftarrow h_\text {collo} /2\), and go back to STEP I.

    (b):

    Fix constants \(B_{2,\nu }\), and \(B_{3,\nu }\) as upper bounds on the second- and third-order derivatives of the components \(f_k\) of \(\varvec{f}\) on each simplex \({\mathfrak S}_\nu\). Then compute the error term \(E^e_{\nu } := n^{2} (1+4\sqrt{n}) B_{2,\nu } \Vert \nabla P_{ij}^\nu \Vert _1 +2 \, n^{3} B_{3,\nu } P_\nu ,\) where

    $$\begin{aligned} P_\nu :=\max _{\varvec{x}\in {\mathfrak S}_\nu }\Vert P(\varvec{x})\Vert _2=\max _{k=0,1,\ldots ,n}\Vert P(\varvec{x}_k)\Vert _2. \end{aligned}$$
    (\(b'\)):

    For the periodic orbit case we need \(B_{i,\nu }\) with \(i = 0, \cdots , 3\); together with \(B_{V_{1,\nu }}\), and \(B_{V_{2,\nu }}\) as the upper bounds on the first- and second-order derivatives of the components \(V_{lj}\) of V. Then compute

    $$\begin{aligned}&E^p_{\nu } := n^2 \cdot \\&\quad \left( (4 \sqrt{n} B_{V_{1,\nu }} + B_{2,\nu }) \Vert \nabla P_{ij}^\nu \Vert _1 + 2 n B_{V_{2,\nu }} P_\nu + 2 \,\kappa _{\nu }^*\, B_{0,\nu } B_{2,\nu } + 2 \,\kappa _{\nu }^*\,B_{1,\nu }^2 \right) . \end{aligned}$$
    (c):

    Check whether Constraints (VP2) of Verification Problem 2 (or 1) are fulfilled. If not, then reduce \(h_\text {triang}\) by a factor, e.g. \(h_\text {triang} \leftarrow h_\text {triang}/8\), and repeat STEP II from the beginning. If the conditions still do not hold, decrease \(h_\text {collo}\) by a factor, e.g. \(h_\text {collo} \leftarrow h_\text {collo} /2\), and go back to STEP I.

  • STEP III. creating the contraction metric

    Build the metric \(P:{\mathcal C}\rightarrow \mathbb {S}^{n\times n}\) as the CPA interpolation of the values \(P(\varvec{y})\), \(\varvec{y}\in {\mathcal V}_{\mathcal T}\). P is a contraction metric for the system on any compact \(\widetilde{K}\subset {\mathcal C}^\circ\).

Remark 1

Note that in most applications it is more practical to use a relaxed version of the procedure above to compute a contraction metric. If the matrices \(P(\varvec{y})\), \(\varvec{y}\in {\mathcal V}_{\mathcal T}\), in STEP II (a) are positive definite in a reasonably large part of \({\mathcal C}\), then one can proceed to the next sub-steps. Further, if additionally Constraints (VP2) of Verification Problem 2 (or 1) are fulfilled in a reasonably large part of \({\mathcal C}\) in STEP II (c), then one can proceed to STEP III.

The CPA interpolation P will then be a contraction metric on any compact subset \(\widetilde{K}\) of the interior of the area where P is both positive definite, asserted by Constraints (VP1) of Verification Problem 1, and fulfills Constraints (VP2) of Verification Problem 2 (or 1). We use this relaxed procedure in our examples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giesl, P., Hafstein, S. & Mehrabinezhad, I. Robustness of Numerically Computed Contraction Metrics. SN COMPUT. SCI. 3, 257 (2022). https://doi.org/10.1007/s42979-022-01128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01128-7

Keywords