Skip to main content

Advertisement

Log in

BACTmobile: A Smart Blood Alcohol Concentration Tracking Mechanism for Smart Vehicles in Healthcare CPS Framework

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Statistics indicate that 40% of road accidents are due to driving while intoxicated or due to driving under influence. With the improvements in science and technology, secure solutions with improvised, practicable, feasible mechanisms should be proposed to eliminate the occurrences of accidents. Keeping this in mind, BACTmobile a fully automated, smart and secured blood alcohol concentration (BAC) Tracking System for vehicles is proposed. BACTmobile collects physiological data, psychological behavior data and physical behavior data to analyze the BAC levels of a person. BAC levels are classified into five categories. With the vehicle’s infotainment along with smart connectivity, the driver is allowed to communicate with the vehicle. The collected and analyzed data are sent to cloud servers for storage purposes whilst maintaining security and privacy. A robust, high efficient BAC detection and prediction model is demonstrated with an accuracy of 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Al-Youif S, Ali MAM, Mohammed MN. Alcohol detection for car locking system. In: IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE), 2018; p. 230–33.

  2. Alberti M. “3 Glasses Later,”. Online (2015). https://www.masmorrastudio.com/wine-project. Accessed 6 Feb 2022.

  3. Arabi S, Ketabchi Haghighat A, Sharma A. A deep learning based solution for construction equipment detection: from development to deployment. Mach Learn. 2019. https://www.researchgate.net/publication/332553794_A_deep_learning_based_solution_for_construction_equipment_detection_from_development_to_deployment

  4. Arora SS, Vatsa M, Singh R, Jain A. Iris recognition under alcohol influence: a preliminary study. In: 2012 5th IAPR International Conference on biometrics (ICB), 2012; p. 336–341. https://doi.org/10.1109/ICB.2012.6199829

  5. Avram R, Tison GH, Aschbacher K, Kuhar P, Vittinghoff E, Butzner M, Runge R, Wu N, Pletcher MJ, Marcus GM, Olgin J. Real-world heart rate norms in the Health eHeart study. NPJ Dig Med. 2019;2(58):1–10.

    Google Scholar 

  6. Azaria A, Ekblaw A, Vieira T, Lippman A. MedRec: using blockchain for medical data access and permission management. In: In Proc. 2nd International Conference on open and big data (OBD), 2016. https://doi.org/10.1109/obd.2016.11

  7. Azizan MA, Rohismadi A, Norhashim N, Norizan N. Development of user interface (UI) and user experience (UX) for smart alcohol detection system in public transportation. In: Mohd Hasnun Arif Hassan, Zulkifli Ahmad (a) Manap, Mohamad Zairi Baharom, Nasrul Hadi Johari, Ummu Kulthum Jamaludin, Muhammad Hilmi Jalil, Idris Mat Sahat, Mohd Nadzeri Omar (Eds) Human-Centered Technology for a Better Tomorrow, 2022; p. 453–463.

  8. BACtrack: Smartphone Breathalyzers (2018). https://www.bactrack.com/collections/smartphone-breathalyzers. Accessed 6 Feb 2022.

  9. BACtrackSKYN: BACtrackSKYN 2018. https://www.bactrack.com/pages/bactrack-skyn-wearable-alcohol-monitor. Mobile application, Accessed 6 Feb 2022.

  10. Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin). 2019;6(3):211–59.

    Article  Google Scholar 

  11. Bapatla AK, Mohanty SP, Kougianos E. sFarm: a distributed ledger based remote crop monitoring system for smart farming. In: 4th IFIP International Internet of Things (IoT) Conference (IFIP-IoT), 2021. p 13–31

  12. Bekman NM, Anderson KG, Trim RS, Metrik J, Diulio AR, Myers MG, Brown SA. Thinking and drinking: alcohol-related cognitions across stages of adolescent alcohol involvement. Psychol Addict Behav. 2011;25(3):415–25.

    Article  Google Scholar 

  13. Bhumkar S, Deotare VV, Babar RV. Intelligent car system for accident prevention using ARM-7. In: Semantic scholar 2012. https://www.semanticscholar.org/paper/Intelligent-Car-System-for-Accident-Prevention-Bhumkar-Deotare/b62ca8167481d3c174aab4260eaf8aa2f389b021

  14. Borne P, Mark AL, Mion N, Somers VK. Effects of alcohol on sympathetic activity, hemodynamics, and chemoreflex sensitivity. Hypertension. 1997;29(6):1278–83.

    Article  Google Scholar 

  15. Breathometer Breeze. https://www.brookstone.com/pd/breathometerthe-smart-breathalyzer/886606p.html. Accessed 6 Feb 2022.

  16. Brown B, Adams AJ, Haegerstrom-Portnoy G, Jones RT, Flom MC. Pupil size after use of marijuana and alcohol. Am J Ophthalmol. 1977;3(83):350–4.

    Article  Google Scholar 

  17. Buckman JF, Eddie D, Vaschillo EG, Vaschillo B, Garcia A, Bates ME. Immediate and complex cardiovascular adaptation to an acute alcohol dose. Alcohol Clin Exp Res. 2015;39(12):2334–44.

    Article  Google Scholar 

  18. Canziani A, Paszke A, Culurciello E. An analysis of deep neural network models for practical applications. Computer Vision and Pattern Recognition (CoRR ) 2016. arXiv:abs/1605.07678.

  19. Capito ES, Lautenbacher S, Horn-Hofmann C. Acute alcohol effects on facial expressions of emotions in social drinkers: a systematic review. Psychol Res Behav Manag. 2017;10(1):369–85.

    Article  Google Scholar 

  20. Castro JJ, Pozo AM, Rubino M, Anera RG, Jiménez Del Barco L. Retinal-image quality and night-vision performance after alcohol consumption. J Ophthalmol. 2014;70(4):823.

    Google Scholar 

  21. Centers AA. Signs of drug use in the eyes: pupil dilation and redness. Online (2019). https://americanaddictioncenters.org/health-complications-addiction/signs-drug-use-eyes. Accessed 6 Feb 2022.

  22. Chen B, Tan Z, Fang W. Blockchain-based implementation for financial product management. In: International Telecommunication Networks and Applications Conference (ITNAC) 2018. https://doi.org/10.1109/atnac.2018.8615246

  23. Chen Y, Lin C, Lin Y, Zhao C. Non-invasive detection of alcohol concentration based on photoplethysmogram signals. IET Image Process. 2018;12(2):188–93.

    Article  Google Scholar 

  24. Chen Y, Xue M, Zhang J, Ou R, Zhang Q, Kuang P. DetectDUI: an in-car detection system for drink driving and BACs. IEEE/ACM Trans Netw. 2021. https://doi.org/10.1109/TNET.2021.3125950.

    Article  Google Scholar 

  25. Emanuele NV, Swade TF, Emanuele MA. Consequences of alcohol use in diabetics. Alcohol Health Res World. 1998;22(3):211–9.

    Google Scholar 

  26. ePermitTest: The physiology of intoxicated driving: vision, motor skills and reaction time. Online 2020. https://www.epermittest.com/drivers-education/physiology-intoxicated-driving. Accessed 6 Feb 2022.

  27. Firm NL. Effects on operating a vehicle. Online. https://www.nysdwi.com/dui-foundation/drunkdriving/impairment/operating/. Accessed 6 Feb 2022.

  28. Floome Floome 2018. https://www.floome.com/. Mobile application, Accessed 6 Feb 2022.

  29. Geneva II, Cuzzo B, Fazili T, Javaid W. Normal body temperature: a systematic review. Open Forum Infect Dis. 2019;6(4):0–32

  30. GinerLabs WrisTAS 2018. https://www.ginerinc.com/wrist-transdermal-alcohol-sensor. Accessed 6 Feb 2022.

  31. Goodman GD, Kaufman J, Day D, Weiss R, Kawata AK, Garcia JK, Santangelo S, Gallagher CJ. Impact of smoking and alcohol use on facial aging in women: results of a large multinational, multiracial, cross-sectional survey. J Clin Aesthet Dermatol. 2019;12(8):28–39.

    Google Scholar 

  32. Gupta N, Lata H, Kaur A. Effect of glare on night time driving in alcoholic versus non-alcoholic professional drivers. Int J Appl Basic Med Res. 2012;2(2):128–31 (PubMed).

    Article  Google Scholar 

  33. Husain K, Ansari RA, Ferder L. Alcohol-induced hypertension: Mechanism and prevention. World J Cardiol. 2014;6(5):245–52.

    Article  Google Scholar 

  34. Indiegogo PROOF-Alcohol Tracking Wearable. https://www.indiegogo.com/projects/proof-alcohol-tracking-wearable/. Accessed 6 Feb 2022.

  35. Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, Mercier PP, Wang J. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016;1(8):1011–9.

    Article  Google Scholar 

  36. Kirstin A, Christian SH, Geoffrey T, Judith AH, Robert A, Jeffrey M, Olgin E, Gregory M. Machine learning prediction of blood alcohol concentration: a digital signature of smart-breathalyzer behavior. npj Digit Med. 2021;4(1):2398–6352.

    Google Scholar 

  37. Klatsky AL, Friedman GD, Siegelaub AB, Gérard MJ. Alcohol consumption and blood pressure. N Engl J Med. 1977;296(21):1194–200 (PMID: 854058).

    Article  Google Scholar 

  38. Krumpe PE, Cummiskey JM, Lillington GA. Alcohol and the respiratory tract. Med Clin N Am. 1984;68(1):201–19.

    Article  Google Scholar 

  39. Lange JE, Voas RB. Defining binge drinking quantities through resulting blood alcohol concentrations. Psychol Addict Behav. 2001;15(4):310–6.

    Article  Google Scholar 

  40. Lapka: Breathe Alcohol Monitor. http://about.mylapka.com/bam/product/overview/. Accessed 6 Feb 2022.

  41. Li B, Downen RS, Dong Q, Tran N, LeSaux M, Meltzer AC, Li Z. A discreet wearable iot sensor for continuous transdermal alcohol monitoring—challenges and opportunities. IEEE Sens J. 2021;21(4):5322–30.

    Article  Google Scholar 

  42. Lim HW, Song Y, Kim JH, Shin YU, Hwang SJ, Hong S. Normal range of eye movement and its relationship to age. Invest Ophthalmol Vis Sci. 2017;58(8):747–57.

    Google Scholar 

  43. Ling J, Heffernan TM, Buchanan T, Rodgers J, Scholey AB, Parrott AC. Effects of alcohol on subjective ratings of prospective and everyday memory deficits. Alcohol Clin Exp Res. 2003;27(6):940–74.

    Article  Google Scholar 

  44. Mathot S. Pupillometry: psychology, physiology, and function. J Cogn. 2018;21(1):1–16.

    Google Scholar 

  45. Mohanty SP, Choppali U, Kougianos E. Everything you wanted to know about smart cities. IEEE Consumer Electron Mag. 2016;5(3):60–70.

    Article  Google Scholar 

  46. Morten SM, Daniel T, Morthen M, Snieder H, Jansonius N, Utheim TP, Hammond CJ, Vehof J. The relationship between alcohol consumption and dry eye. Ocul Surf. 2021;21:87–95.

    Article  Google Scholar 

  47. Myers RD. Alcohol’s effect on body temperature: hypothermia, hyperthermia or poikilothermia? Brain Res Bull. 1981;7(2):209–20.

    Article  Google Scholar 

  48. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography Mailing list at https://metzdowd.com 2009. Accessed 11 Jan 2022.

  49. Neal DJ, Carey KB. Association between alcohol intoxication and alcohol-related problems: an event-level analysis. Psychol Addict Behav. 2007;21(2):194–204.

    Article  Google Scholar 

  50. NPR Looking At What The Eyes See. Webpage 2011. https://www.npr.org/2011/02/25/134059275/looking-at-what-the-eyes-see:~:text=Transcript-,We move our eyes three times a,over 100,000 times each day. Accessed 6 Feb 2022.

  51. Ping S, Chen Y, Guo M, Yu H. Acute effects of alcohol on heart rate variability: time-related changes and gender difference. Biomed Eng Appl Basis Commun. 2014;26:1450048.

    Article  Google Scholar 

  52. Preetham DA, Rohit MS, Ghontale AG, Priyadarsini MJP. Safety helmet with alcohol detection and theft control for bikers. In: International Conference on intelligent sustainable systems (ICISS) 2017; p. 129–145.

  53. Rachakonda L, Bapatla AK, Mohanty SP, Kougianos E. SaYoPillow: blockchain-integrated privacy-assured IoMT framework for stress management considering sleeping habits. IEEE Trans Consum Electron. 2021;67(1):20–9.

    Article  Google Scholar 

  54. Rachakonda L, Mohanty SP, Kougianos E. Donot-DUEye: an IoT enabled edge device to monitor blood alcohol concentration from eyes. In: IEEE International Symposium on smart electronic systems (iSES) (Formerly iNiS) 2019; p. 87–92.

  55. Rachakonda L, Mohanty SP, Kougianos E. iLog: an intelligent device for automatic food intake monitoring and stress detection in the IoMT. IEEE Trans Consum Electron. 2020;66(2):115–24.

    Article  Google Scholar 

  56. Rachakonda L, Mohanty SP, Kougianos E, Sayeed M. Smart-steering: an IoMT-device to monitor blood alcohol concentration using physiological signals. In: 2020 IEEE International Conference on consumer electronics (ICCE), 2020; p. 1–6.

  57. Shivani R, Jeffrey Goldsmith R, Anthenelli RM. Alcoholism and psychiatric disorders. Alcohol Res Health. 2022;26(2):90–8.

    Google Scholar 

  58. Silva JBS, Cristino ED, Almeida NL, Medeiros PCB, Santos NAD. Effects of acute alcohol ingestion on eye movements and cognition: a double-blind, placebo-controlled study. PLoS One. 2017;12(10). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638320/

  59. Sullivan EV, Harris RA, Pfefferbaum A. Alcohol’s effects on brain and behavior. Alcohol Res Health. 2010;33(1–2):127–43.

    Google Scholar 

  60. Tapadar S, Ray S, Saha HN, Saha AK, Karlose R. Accident and alcohol detection in bluetooth enabled smart helmets for motorbikes. In: IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018; p. 584–590.

  61. Thomas T, Porter R. An essay, medical, philosophical, and chemical on drunkenness and its effects on the human body (Psychology Revivals). 1st ed. Abingdon: Routledge; 1988.

    Google Scholar 

  62. Toffaletti JG, Rackley CR: Chapter three—monitoring oxygen status. In: Advances in clinical chemistry, vol. 77. Elsevier; 2016.

  63. Uzairue S, Ighalo J, Matthews V, Nwukor F, Popoola S. IoT-enabled alcohol detection system for road transportation safety in smart city. In: Gervasi et al. (Eds.) Computational science and its applications. Springer, Cham, 2018; 10963:695–704. https://doi.org/10.1007/978-3-319-95171-3_55

  64. Van Dyke N, Fillmore MT. Alcohol effects on simulated driving performance and self-perceptions of impairment in DUI offenders. Exp Clin Psychopharmacol. 2014;22(6):484–93.

    Article  Google Scholar 

  65. Vangala A, Das AK, Kumar N, Alazab M. Smart secure sensing for IoT-based agriculture: blockchain perspective. IEEE Sens J. 2020; 21:1.

  66. Vardhman R. Car accident statistics in The U.S.—2019 (Infographic). Web page (2019). https://carsurance.net/blog/car-accident-statistics/infographic. Accessed 6 Feb 2022.

  67. Viera AJ. The new normal blood pressure: what are the implications for family medicine? J Am Board Family Med. 2007;20(1):45–51.

    Article  MathSciNet  Google Scholar 

  68. Vive Vive. https://www.vive.com/eu/. Accessed 6 Feb 2022.

  69. Wetherill RR, Fromme K. Alcohol-induced blackouts: a review of recent clinical research with practical implications and recommendations for future studies. Alcohol Clin Exp Res. 2016;40(5):922–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraju P. Mohanty.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest and there was no human or animal testing or participation involved in this research. All data were obtained from public domain sources.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachakonda, L., Bapatla, A.K., Mohanty, S.P. et al. BACTmobile: A Smart Blood Alcohol Concentration Tracking Mechanism for Smart Vehicles in Healthcare CPS Framework. SN COMPUT. SCI. 3, 236 (2022). https://doi.org/10.1007/s42979-022-01142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-022-01142-9

Keywords

Navigation